The Structure of Modules over Hereditary Rings

被引:0
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute,
来源
Mathematical Notes | 2000年 / 68卷
关键词
hereditary ring; projective module; -projective module;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a bounded hereditary Noetherian prime ring. For an A-module MA, we prove that M is a finitely generated projective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${A \mathord{\left/ {\vphantom {A {r\left( M \right)}}} \right. \kern-\nulldelimiterspace} {r\left( M \right)}}$$ \end{document}-module if and only if M is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\pi }$$ \end{document}-projective finite-dimensional module, and either M is a reduced module or A is a simple Artinian ring. The structure of torsion or mixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\pi }$$ \end{document}-projective A-modules is completely described.
引用
收藏
页码:627 / 639
页数:12
相关论文
共 9 条
[1]  
Tuganbaev A. A.(1998)Modules over hereditary rings Mat. Sb. 189 143-160
[2]  
Lenagan T. H.(1973)Bounded hereditary noetherian prime rings J. London Math. Soc. 6 241-246
[3]  
Fuller K. R.(1970)On quasi-projective modules via relative projectivity Arch. Math. 21 369-373
[4]  
Hill D. A.(1974)Quasi-injective and quasi-projective modules over hereditary noetherian prime rings Can. J. Math. 26 1173-1185
[5]  
Singh S.(1975)Modules over hereditary noetherian prime rings Canad. J. Math. 27 867-883
[6]  
Singh S.(1976)Modules over hereditary noetherian prime rings. II Canad. J. Math. 28 73-82
[7]  
Singh S.(1978)Pure submodules of modules over bounded (hnp)-rings Arch. Math. 30 570-577
[8]  
Singh S.(undefined)undefined undefined undefined undefined-undefined
[9]  
Talwar S.(undefined)undefined undefined undefined undefined-undefined