Weighted variation inequalities for differential operators and singular integrals in higher dimensions

被引:0
作者
Tao Ma
José L. Torrea
QuanHua Xu
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Universidad Autónoma de Madrid,Departamento de Matemáticas
[3] Harbin Institute of Technology,Institute for Advanced Study in Mathematics
[4] Université de Franche-Comté,Laboratoire de Mathématiques
[5] Institut Universitaire de France,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
variation inequalities; weights; differential operators; singular integrals; vector-valued variation inequalities; 42B20; 42B25; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove weighted q-variation inequalities with 2 < q < ∞ for sharp truncations of singular integral operators in higher dimensions. The vector-valued extensions of these inequalities are also given. Parallel results are proven for differential operators.
引用
收藏
页码:1419 / 1442
页数:23
相关论文
共 45 条
  • [1] Bourgain J(1989)Pointwise ergodic theorems for arithmetic sets Publ Math Inst Hautes Études Sci 69 5-41
  • [2] Campbell J T(2000)Oscillation and variation for the Hilbert transform Duke Math J 105 59-83
  • [3] Jones R L(2003)Oscillation and variation for singular integrals in higher dimensions Trans Amer Math Soc 355 2115-2137
  • [4] Reinhold K(2009)The J Evol Equ 9 81-102
  • [5] Campbell J T(2012)-variation as an operator between maximal operators and singular integrals Rev Mat Iberoam 28 857-878
  • [6] Jones R L(2004)Variational estimates for paraproducts Isreal J Math 141 125-144
  • [7] Reinhold K(1988)Dimension free estimates for the oscillation of Riesz transforms Trans Amer Math Soc 110 383-397
  • [8] Crescimbeni R(2016)Extrapolation results for classes of weights J Math Anal Appl 437 1084-1100
  • [9] Macías R A(2013)Vector valued Bull Lond Math Soc 45 529-540
  • [10] Menárguez T(1998)-variation for ergodic averages and analytic semigroups Ergodic Theory Dynam. Systems 18 889-935