Global W2,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{2,\delta }$$\end{document} estimates for a type of singular fully nonlinear elliptic equations

被引:0
作者
Dongsheng Li
Zhisu Li
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
关键词
Singular fully nonlinear elliptic equations; Viscosity solutions; Global regularity; estimates; 35B45; 35D10; 35J60;
D O I
10.1007/s00209-016-1743-5
中图分类号
学科分类号
摘要
We obtain global W2,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{2,\delta }$$\end{document} estimates for a type of singular fully nonlinear elliptic equations where the right hand side term belongs to L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}. The main idea of the proof is to slide paraboloids from below and above to touch the solution of the equation, and then to estimate the low bound of the measure of the set of contact points by the measure of the set of vertex points.
引用
收藏
页码:1167 / 1179
页数:12
相关论文
共 17 条
[1]  
Birindelli I(2004)Comparison principle and Liouville type results for singular fully nonlinear operators Ann. Fac. Sci. Toulouse Math. 13 261-287
[2]  
Demengel F(2010)Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators J. Differ. Equ. 249 1089-1110
[3]  
Birindelli I(1997)Nondivergent elliptic equations on manifolds with nonnegative curvature Commun. Pure Appl. Math. 50 623-665
[4]  
Demengel F(1989)Interior a priori estimates for solutions of fully nonlinear equations Ann. Math. 130 189-213
[5]  
Cabré X(2015)Quadratic expansions and partial regularity for fully nonlinear uniformly parabolic equations Calc. Var. Partial Differ. Equ. 54 183-216
[6]  
Caffarelli LA(2009)Alexandroff–Bakelman–Pucci estimate for singular or degenerate fully nonlinear elliptic equations C. R. Math. 347 1165-1168
[7]  
Daniel J-P(2010)Harnack inequality for singular fully nonlinear operators and some existence results Calc. Var. Partial Differ. Equ. 39 557-578
[8]  
Dávila G(1986)Second derivative Proc. Am. Math. Soc. 96 447-451
[9]  
Felmer P(2007)-estimates for elliptic equations of nondivergent type Commun. Part. Diff. Equ. 32 557-578
[10]  
Quaas A(1984)Small perturbation solutions for elliptic equations J. Differ. Equ. 51 126-150