Darboux–Halphen–Ramanujan Vector Field on a Moduli of Calabi-Yau Manifolds

被引:0
作者
Younes Nikdelan
机构
[1] Instituto de Matemática Pura e Aplicada (IMPA),
来源
Qualitative Theory of Dynamical Systems | 2015年 / 14卷
关键词
Darboux–Halphen–Ramanujan vector field; Hodge structure; Picard–Fuchs equation; Gauss–Manin connection; 14H10; 34M45; 37F75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain an ordinary differential equation H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{H}$$\end{document} from a Picard–Fuchs equation associated with a nowhere vanishing holomorphic n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-form. We work on a moduli space T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{T }$$\end{document} constructed from a Calabi–Yau n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-fold W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document} together with a basis of the middle complex de Rham cohomology of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document}. We verify the existence of a unique vector field H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{H}$$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{T }$$\end{document} such that its composition with the Gauss–Manin connection satisfies certain properties. The ordinary differential equation given by H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{H}$$\end{document} is a generalization of differential equations introduced by Darboux, Halphen and Ramanujan.
引用
收藏
页码:71 / 100
页数:29
相关论文
共 28 条
[1]  
Batyrev VV(1995)Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric variety Commun. Math. Phys. 168 169-178
[2]  
Van Starten D(1881)Sur un systéme d’équations différetielles Comptes Rendus des sánces de l’Acad. des Sci. 92 1389-1393
[3]  
Brioschi Fr(1956)The space of Kähler metrics Proc. Int. Congr. Math., Amesterdam 1954 206-207
[4]  
Calabi E(1991)A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory Nuclear Phys. B 359 21-74
[5]  
Candelas P(1985)Vacuum configurations for superstrings Nuclear Phys. 258 47-74
[6]  
De La Ossa XC(1878)Sur la théorie des coordonnées curvilignes et les systémes orthogonaux Ann. Ec. Normale Supérieure 7 101-150
[7]  
Green PS(2006)Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds, Mirror symmetry V, AMS/IP Stud. Adv. Math. 38 517-537
[8]  
Parkes L(1990)Duality in Calabi–Yau moduli space Nuclear Phys. 338 15-37
[9]  
Candelas P(2012)Semicomplete meromorphic vector fields on complex surfaces J. Reine Angew. Math. 667 27-65
[10]  
Horowitz G(1881)Sur des fonctions qui proviennent de l’équation de Gauss C. R. Acad. Sci. Paris 92 856-859