The Non-linear Schrödinger Equation and the Conformal Properties of Non-relativistic Space-Time

被引:0
作者
P. A. Horváthy
J.-C. Yera
机构
[1] Université de Tours,Laboratoire de Mathématiques et de Physique Théorique
来源
International Journal of Theoretical Physics | 2009年 / 48卷
关键词
Non-linear Schrödinger equation; Schrödinger symmetry; Conformal structure of non-relativistic space-time;
D O I
暂无
中图分类号
学科分类号
摘要
The cubic non-linear Schrödinger equation where the coefficient of the nonlinear term is a function F(t,x) only passes the Painlevé test of Weiss, Tabor, and Carnevale only for F=(a+bt)−1, where a and b are constants. This is explained by transforming the time-dependent system into the constant-coefficient NLS by means of a time-dependent non-linear transformation, related to the conformal properties of non-relativistic space-time. A similar argument explains the integrability of the NLS in a uniform force field or in an oscillator background.
引用
收藏
页码:3139 / 3146
页数:7
相关论文
共 67 条
  • [1] Henkel M.(1997)undefined Phys. Rev. Lett. 78 1940-388
  • [2] Henkel M.(2002)undefined Nucl. Phys. B 641 405-460
  • [3] Lukierski J.(2006)undefined Phys. Lett. A 357 1-126
  • [4] Stichel P.C.(2007)undefined Phys. Lett. B 650 203-1167
  • [5] Zakrzewski W.J.(2008)undefined Phys. Rev. D 78 087701-undefined
  • [6] Lukierski J.(1996)undefined Phys. Rev. Lett. 77 4406-undefined
  • [7] Stichel P.C.(1997)undefined J. Non. Lin. Math. Phys. 4 241-undefined
  • [8] Zakrzewski W.J.(1983)undefined J. Math. Phys. 24 522-undefined
  • [9] Galajinsky A.V.(1983)undefined J. Math. Phys. 24 1405-undefined
  • [10] Aglietti U.(1984)undefined J. Math. Phys. 25 13-undefined