On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems

被引:0
作者
Xianfu Wang
Xinmin Yang
机构
[1] University of British Columbia,Mathematics
[2] Chongqing Normal University,School of Mathematics
来源
Journal of Optimization Theory and Applications | 2015年 / 166卷
关键词
-algorithm; Fenchel–Rockafellar’s duality; Proximal point method; Proximity function; Split feasibility problem; 90C25; 65K10; 47H04; 90C30; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
Many inverse problems can be formulated as split feasibility problems. To find feasible solutions, one has to minimize proximity functions. We show that the existence of minimizers to the proximity function for Censor–Elfving’s split feasibility problem is equivalent to the existence of projections on appropriate convex sets and provide conditions under which such projections exist. These projections turn out to be the unique optimal solution of their Fenchel–Rockafellar duals and can be computed by the proximal point algorithm efficiently. Applications to linear equations and linear feasibility problems are given.
引用
收藏
页码:861 / 888
页数:27
相关论文
共 50 条