Vacua of exotic massive 3D gravity

被引:0
作者
Mariano Chernicoff
Gaston Giribet
Nicolás Grandi
Julio Oliva
机构
[1] Universidad Nacional Autónoma de México,Departamento de Física, Facultad de Ciencias
[2] New York University,Center for Cosmology and Particle Physics
[3] Instituto de Física de La Plata — CONICET & Departamento de Física — UNLP,Departamento de Física
[4] Universidad de Concepción,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Black Holes; Classical Theories of Gravity; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the recently proposed exotic 3D massive gravity. We show that this theory has a rich space of vacua, including asymptotically Anti de-Sitter (AdS) geometries obeying either the standard Brown-Henneaux boundary conditions or the weakened asymptotic behavior of the so-called Log-gravity. Both sectors contain non-Einstein spaces with SO(2) × ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document} isometry group, showing that the Birkhoff theorem does not hold all over the parameter space, even if strong AdS boundary conditions are imposed. Some of these geometries correspond to 3D black holes dressed with a Log-gravity graviton. We conjecture that such geometries appear in a curve of the parameter space where the exotic 3D massive gravity on AdS3 is dual to a chiral conformal field theory. The theory also contains other interesting vacua, including different families of non-AdS black holes.
引用
收藏
相关论文
共 64 条
  • [1] Bañados M(1992)The black hole in three-dimensional space-time Phys. Rev. Lett. 69 1849-undefined
  • [2] Teitelboim C(1998)Black hole entropy from near horizon microstates JHEP 02 009-undefined
  • [3] Zanelli J(2010)Quantum gravity partition functions in three dimensions JHEP 02 029-undefined
  • [4] Strominger A(1984)Three-dimensional cosmological gravity: dynamics of constant curvature Annals Phys. 153 405-undefined
  • [5] Maloney A(1986)Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity Commun. Math. Phys. 104 207-undefined
  • [6] Witten E(1982)Three-dimensional massive gauge theories Phys. Rev. Lett. 48 975-undefined
  • [7] Deser S(2008)Chiral gravity in three dimensions JHEP 04 082-undefined
  • [8] Jackiw R(2008)Instability in cosmological topologically massive gravity at the chiral point JHEP 07 134-undefined
  • [9] Brown JD(2008)Topologically massive gravity at the chiral point is not chiral JHEP 10 045-undefined
  • [10] Henneaux M(2009)Cosmological topologically massive gravitons and photons Class. Quant. Grav. 26 272-undefined