State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method

被引:0
|
作者
Dae-Won Chung
Jae-Ha Ko
Keun-Young Yoon
机构
[1] Honam University,Department of Electrical Engineering
关键词
State-of-charge; Battery; SOC estimation error; Long short-term memory; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of ambient temperature and the flat form characteristics of the open circuit voltage state-of-charge (SOC) curve for lithium iron phosphate batteries are the major issues that influence the accuracy of the SOC estimation, which is critical for estimating the driving range of electric vehicles, and the optimal charge control of batteries to prevent the sudden loss of power in battery-powered systems. We proposed a SOC estimation method by using a long short-term memory (LSTM)–recurrent neural network (RNN) to reduce the SOC estimation errors, and to develop a model for the sophisticated battery behaviors under varying ambient temperatures, including time-variable current, voltage, and temperature conditions. The proposed method was evaluated using data from the LiFePO4 battery obtained by the dynamic stress test. The experimental results show that the proposed method can accurately learn the influence of ambient temperatures on the battery and also estimate the battery's SOC under varying temperatures with root mean square errors less than 1.5% and mean average errors less than 1%. Moreover, the proposed method also provides a sufficient SOC estimation under other temperature conditions. The main contribution of this study is the comprehensive explanation and implementation process of the data-based DL approach for the SOC estimation of the LIBs in the following aspects, (1) An LSTM-RNN was trained to model the complex battery dynamics under varying ambient temperatures. (2) The proposed method is model-free and data-driven approach, which means there is no need to construct OCV-SOC lookup tables under varying temperatures in order to pick an appropriate equivalent circuit model. The proposed method can be extended for the SOC estimation of other types of lithium batteries.
引用
收藏
页码:1931 / 1945
页数:14
相关论文
共 50 条
  • [21] Deep Learning-Based State-of-Charge Estimation for Lithium-Ion Batteries Across the Entire Life Cycle
    Zhang, Lin
    Wu, Chunling
    Huang, Xinrong
    Li, Yanbo
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (10): : 36 - 43
  • [22] Adaptive Parameter Identification and State-of-Charge Estimation of Lithium-Ion Batteries
    Rahimi-Eichi, Habiballah
    Chow, Mo-Yuen
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4012 - 4017
  • [23] An improved adaptive estimator for state-of-charge estimation of lithium-ion batteries
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    JOURNAL OF POWER SOURCES, 2018, 402 : 422 - 433
  • [24] State-of-charge estimation in lithium-ion batteries: A particle filter approach
    Tulsyan, Aditya
    Tsai, Yiting
    Gopaluni, R. Bhushan
    Braatz, Richard D.
    JOURNAL OF POWER SOURCES, 2016, 331 : 208 - 223
  • [25] Nonlinear Observer Designs for State-of-Charge Estimation of Lithium-ion Batteries
    Dey, Satadru
    Ayalew, Beshah
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 248 - 253
  • [26] Comparison of State-of-Charge Estimation Methods for Stationary Lithium-Ion Batteries
    Berrueta, A.
    San Martin, I.
    Sanchis, P.
    Ursua, A.
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 2010 - 2015
  • [27] State-of-charge estimation of lithium-ion batteries based on ultrasonic detection
    Cai, Zhiduan
    Pan, Tianle
    Jiang, Haoye
    Li, Zuxin
    Wang, Yulong
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [28] eXogenous Kalman Filter for State-of-Charge Estimation in Lithium-Ion Batteries
    Hasan, Agus
    Skriver, Martin
    Johansen, Tor Arne
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1403 - 1408
  • [29] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [30] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):