State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method

被引:0
|
作者
Dae-Won Chung
Jae-Ha Ko
Keun-Young Yoon
机构
[1] Honam University,Department of Electrical Engineering
关键词
State-of-charge; Battery; SOC estimation error; Long short-term memory; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of ambient temperature and the flat form characteristics of the open circuit voltage state-of-charge (SOC) curve for lithium iron phosphate batteries are the major issues that influence the accuracy of the SOC estimation, which is critical for estimating the driving range of electric vehicles, and the optimal charge control of batteries to prevent the sudden loss of power in battery-powered systems. We proposed a SOC estimation method by using a long short-term memory (LSTM)–recurrent neural network (RNN) to reduce the SOC estimation errors, and to develop a model for the sophisticated battery behaviors under varying ambient temperatures, including time-variable current, voltage, and temperature conditions. The proposed method was evaluated using data from the LiFePO4 battery obtained by the dynamic stress test. The experimental results show that the proposed method can accurately learn the influence of ambient temperatures on the battery and also estimate the battery's SOC under varying temperatures with root mean square errors less than 1.5% and mean average errors less than 1%. Moreover, the proposed method also provides a sufficient SOC estimation under other temperature conditions. The main contribution of this study is the comprehensive explanation and implementation process of the data-based DL approach for the SOC estimation of the LIBs in the following aspects, (1) An LSTM-RNN was trained to model the complex battery dynamics under varying ambient temperatures. (2) The proposed method is model-free and data-driven approach, which means there is no need to construct OCV-SOC lookup tables under varying temperatures in order to pick an appropriate equivalent circuit model. The proposed method can be extended for the SOC estimation of other types of lithium batteries.
引用
收藏
页码:1931 / 1945
页数:14
相关论文
共 50 条
  • [1] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945
  • [2] State-of-charge estimation of lithium-ion batteries using LSTM and UKF
    Yang, Fangfang
    Zhang, Shaohui
    Li, Weihua
    Miao, Qiang
    ENERGY, 2020, 201 (201)
  • [3] A State-of-Charge Estimation Method based on Bidirectional LSTM Networks for Lithium-ion Batteries
    Zhang, Zhen
    Xu, Ming
    Ma, Longhua
    Yu, Binchao
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 211 - 216
  • [4] A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM
    Ren, Xiaoqing
    Liu, Shulin
    Yu, Xiaodong
    Dong, Xia
    ENERGY, 2021, 234
  • [5] Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
    Song, Xiangbao
    Yang, Fangfang
    Wang, Dong
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 88894 - 88902
  • [6] Collaborative framework of Transformer and LSTM for enhanced state-of-charge estimation in lithium-ion batteries
    Bao, Gengyi
    Liu, Xinhua
    Zou, Bosong
    Yang, Kaiyi
    Zhao, Junwei
    Zhang, Lisheng
    Chen, Muyang
    Qiao, Yuanting
    Wang, Wentao
    Tan, Rui
    Wang, Xiangwen
    ENERGY, 2025, 322
  • [7] IoT-Enabled Deep Learning Algorithm for Estimation of State-of-Charge of Lithium-ion Batteries
    Pushpavanam, B.
    Kalyani, S.
    Prasanna, M. Arul
    Sangaiah, Arun Kumar
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [8] A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation
    Guo, Shanshan
    Ma, Liang
    ENERGY, 2023, 263
  • [9] State-of-charge estimation of lithium-ion batteries based on multiple filters method
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2635 - 2640
  • [10] A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries
    Liu, Xintian
    Deng, Xuhui
    He, Yao
    Zheng, Xinxin
    Zeng, Guojian
    ENERGIES, 2020, 13 (01)