Some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-continued fractions of Ramanujan, their explicit values, and equalities

被引:0
作者
Nipen Saikia
机构
[1] Rajiv Gandhi University,Department of Mathematics
关键词
-Continued fraction; Ramanujan’s theta-function ; Jacobi’s triple product identity; 33D15; 11A55; 30B70;
D O I
10.1007/s13370-014-0290-7
中图分类号
学科分类号
摘要
We deduce some new q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-continued fractions from a general continued fraction identity recorded by Ramanujan in his notebook and give their theta-function representations. We also establish general formulas for explicit evaluations and prove identities on equalities of these continued fractions.
引用
收藏
页码:1359 / 1370
页数:11
相关论文
共 20 条
[1]  
Baruah ND(2006)Modular equations and explicit values of Ramanujan–Selberg continued fraction Int. J. Math. Math. Sci. 2006 1-15
[2]  
Saikia N(2008)Explicit evaluations of Ramanujan–Gllnitz–Gordon continued fraction Monatsh. Math. 154 271-288
[3]  
Baruah ND(2007)Two parameters for Ramanujan’s theta-functions and their explicit values Rocky Mt. J. Math. 37 1747-1790
[4]  
Saikia N(2003)On the generalized Rogers–Ramanujan continued fraction Ramanujan J. 7 321-331
[5]  
Baruah ND(2005)Some continued fractions in Ramanujans lost notebook Monatsh. Math. 146 37-48
[6]  
Saikia N(2011)Some equalities for continued fractions of generalized Rogers–Ramanujan type J. Korean Math. Soc. 48 887-898
[7]  
Berndt BC(2011)On some new modular equations and their applications to continued fractions Int. Math. Forum 6 2881-2905
[8]  
Yee AJ(2011)Modular identities and explicit values of a continued fraction of order twelve JP J. Algebra, Number Theory Appl. 22 127-154
[9]  
Lee J(2012)Modular identities and explicit values of a new continued fraction of Ramanujan Glob. J. Math. Sci. Theory Pract. 4 245-248
[10]  
Sohn J(2012)Modular identities and explicit evaluations of a continued fraction of Ramanujan Int. J. Math. Math. Sci. 2012 1-10