Binary construction of pure additive quantum codes with distance five or six

被引:0
作者
YangYu Fan
WeiLiang Wang
RuiHu Li
机构
[1] Northwestern Polytechnical University,School of Electronics and Information
[2] Air Force Engineering University,Science College
来源
Quantum Information Processing | 2015年 / 14卷
关键词
Quantum code; Steane construction; Binary quasi-cyclic self-orthogonal code; Pair of nested self-orthogonal codes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses binary quantum stabilizer codes with distance five or six constructed from binary self-orthogonal codes using Steane construction. First, nineteen special binary one-generator quasi-cyclic self-orthogonal [pk,k]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[pk,k]$$\end{document} codes with dual distance five or six for 12≤k≤16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12 \le k \le 16$$\end{document} are built. Second, a feasible algorithm for searching subcodes of linear codes and an extension strategy for pairs of nested self-orthogonal codes are proposed, then thirty-eight code pairs are designed from obtained quasi-cyclic self-orthogonal codes. Third, thirty-two good binary quantum stabilizer codes are constructed from the code pairs obtained through Steane construction. Thirty of them are previously known codes. In particular, two codes [[52,31,6]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[52,31,6]]$$\end{document} and [[56,34,6]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[56,34,6]]$$\end{document} have improved codes [[52,31,5]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[52,31,5]]$$\end{document} and [[56,34,5]]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[56,34,5]]$$\end{document} constructed by quaternary construction, and thus, they are record breaking ones.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 36 条
[1]  
Shor PW(1995)Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 2493-2496
[2]  
Steane AM(1996)Error correcting codes in quantum theory Phys. Rev. Lett. 77 793-797
[3]  
Calderbank AR(1996)Good quantum error-correcting codes exist Phys. Rev. A 54 1098-1105
[4]  
Shor PW(1999)Enlargement of calderbank-shor-steane quantum codes IEEE Trans. Inf. Theory 45 2492-2495
[5]  
Steane AM(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inf. Theory 44 1369-1387
[6]  
Calderbank AR(2008)Binary construction of quantum codes of minimum distances five and six Discrete Math. 308 1603-1611
[7]  
Rains EM(2004)Binary construction of quantum codes of minimum distance three and four IEEE Trans. Inf. Theory 50 1331-1335
[8]  
Shor PW(1991)Some best rate IEEE Trans. Inf. Theory 37 552-555
[9]  
Sloane NJA(1992) and rate IEEE Trans. Inf. Theory 38 1366-1369
[10]  
Li R(1998) systematic quasi-cyclic codes IEEE Trans. Inf. Theory 44 1994-1996