Genome editing of polyploid crops: prospects, achievements and bottlenecks

被引:0
|
作者
Jan G. Schaart
Clemens C. M. van de Wiel
Marinus J. M. Smulders
机构
[1] Wageningen University and Research,Plant Breeding
来源
Transgenic Research | 2021年 / 30卷
关键词
Genome editing; Polyploid crops; CRISPR/Cas; TALENs;
D O I
暂无
中图分类号
学科分类号
摘要
Plant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.g. for introgression breeding. However, methods such as random mutation breeding are difficult to apply in polyploid crops because there are multiple homoeologous copies (alleles) of each gene. Genome editing technology has revolutionized mutagenesis as it enables precisely selecting targets. The genome editing tool CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as all alleles and/or copies of a gene can be targeted at once. Even multiple genes, each with multiple alleles, may be targeted simultaneously. In addition to targeted mutagenesis, targeted replacement of undesirable alleles by desired ones may become a promising application of genome editing for the improvement of polyploid crops, in the near future. Several examples of the application of genome editing for targeted mutagenesis are described here for a range of polyploid crops, and achievements and bottlenecks are highlighted.
引用
收藏
页码:337 / 351
页数:14
相关论文
共 50 条
  • [1] Genome editing of polyploid crops: prospects, achievements and bottlenecks
    Schaart, Jan G.
    van de Wiel, Clemens C. M.
    Smulders, Marinus J. M.
    TRANSGENIC RESEARCH, 2021, 30 (04) : 337 - 351
  • [2] Genome editing technology in polyploid crops
    Li, Chao
    Shu, Yu
    Hu, Qiong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] Genome editing opens a new era of genetic improvement in polyploid crops
    Qamar U.Zaman
    Chao Li
    Hongtao Cheng
    Qiong Hu
    TheCropJournal, 2019, 7 (02) : 141 - 150
  • [4] Genome editing opens a new era of genetic improvement in polyploid crops
    Zaman, Qamar U.
    Li, Chao
    Cheng, Hongtao
    Hu, Qiong
    CROP JOURNAL, 2019, 7 (02): : 141 - 150
  • [5] Advanced Genome Editing Technologies: Potentials and Prospects in Improvement of Sugar crops
    Amaresh, G.
    Nunavath, Aswini
    Appunu, C.
    Viswanathan, C.
    Kumar, Rajeev
    Gujjar, R. S.
    Manimekalai, R.
    SUGAR TECH, 2025, 27 (01) : 14 - 28
  • [6] Genome editing prospects for heat stress tolerance in cereal crops
    Pandey, Saurabh
    Divakar, S.
    Singh, Ashutosh
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [7] Nucleases for genome editing in crops
    Kathiria, Falai
    Eudes, Francois
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2014, 3 (01) : 14 - 19
  • [8] PLANT GENOME EDITING : ADVANCES AND PROSPECTS OF MARKET-READY FOOD CROPS
    Heynes, Xanthea
    Wang, Duoduo
    Lu, Chungui
    ANNUAL PLANT REVIEWS ONLINE, 2022, 5 (02): : 213 - 232
  • [9] CRISPR-Cas Genome Editing for Horticultural Crops Improvement: Advantages and Prospects
    Rukavtsova, Elena B. B.
    Zakharchenko, Natalia S. S.
    Lebedev, Vadim G. G.
    Shestibratov, Konstantin A. A.
    HORTICULTURAE, 2023, 9 (01)
  • [10] Genome editing in fruit, ornamental, and industrial crops
    Fabiola Ramirez-Torres
    Rishikesh Ghogare
    Evan Stowe
    Pedro Cerdá-Bennasser
    Maria Lobato-Gómez
    Bruce A Williamson-Benavides
    Patricia Sarai Giron-Calva
    Seanna Hewitt
    Paul Christou
    Amit Dhingra
    Transgenic Research, 2021, 30 : 499 - 528