Factoring Matrices into the Product of Circulant and Diagonal Matrices

被引:1
作者
Marko Huhtanen
Allan Perämäki
机构
[1] University of Oulu,Department of Mathematical Sciences
[2] Aalto University,Department of Mathematics and Systems Analysis
来源
Journal of Fourier Analysis and Applications | 2015年 / 21卷
关键词
Circulant matrix; Diagonal matrix; Sparsity structure; Matrix factoring; Polynomial factoring; Multiplicative Fourier compression; 15A23; 65T50; 65F50; 12D05;
D O I
暂无
中图分类号
学科分类号
摘要
A generic matrix A∈Cn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \,\mathbb {C}^{n \times n}$$\end{document} is shown to be the product of circulant and diagonal matrices with the number of factors being 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-1$$\end{document} at most. The demonstration is constructive, relying on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal matrices into linear factors. For the linear factors, the sum of two scaled permutations is factored into the product of a circulant matrix and two diagonal matrices. Extending the monomial group, both low degree and sparse polynomials in a permutation matrix over diagonal matrices, together with their permutation equivalences, constitute a fundamental sparse matrix structure. Matrix analysis gets largely done polynomially, in terms of permutations only.
引用
收藏
页码:1018 / 1033
页数:15
相关论文
共 23 条
[1]  
Bhatia R(2000)Trimming, truncating and averaging of matrices Am. Math. Mon. 107 602-608
[2]  
Benzi M(2002)Preconditioning techniques for large linear systems: a survey J. Comput. Phys. 182 418-477
[3]  
Benzi M(2000)Preconditioning highly indefinite and nonsymmetric matrices SIAM J. Sci. Comput. 22 1333-1353
[4]  
Haws JC(1999)The design and use of algorithms for permuting large entries to the diagonal of sparse matrices SIAM J. Matrix Anal. Appl. 20 889-901
[5]  
Tůma M(1985)Maximality of the monomial group Lin. Multilin. Algebra 18 1-7
[6]  
Duff IS(2008)Approximating ideal diffractive optical systems J. Math. Anal. Appl. 345 53-62
[7]  
Koster J(2015)The product of matrix subspaces Linear Algebra Appl. 471 150-168
[8]  
Friedland S(2011)Factoring in the metaplectic group and optics Oper. Matrices 5 173-181
[9]  
Huhtanen M(1992)Conjugacy and factorization results on matrix groups, functional analysis and operator theory Pol. Acad. Sci. Wars. 1994 203-221
[10]  
Huhtanen M(1998)Algorithmic design of diffractive optical systems for information processing Physica D 120 196-205