Bi-additive σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-random operator inequalities and random quasi-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-multipliers on MB-algebras

被引:0
作者
H. M. Srivastava
Reza Saadati
Sun Young Jang
机构
[1] University of Victoria,Department of Mathematics and Statistics
[2] China Medical University Hospital,Department of Medical Research
[3] China Medical University,Department of Mathematics and Informatics
[4] Azerbaijan University,Department of Mathematics
[5] Iran University of Science and Technology,Department of Mathematics
[6] University of Ulsan,undefined
关键词
Random quasi-multiplier on ; -algebra; Random quasi-; -multiplier on MB-algebra; Fixed-point technique; Bi-additive ; -random operator inequality; Primary 54H12; 46L05; 47H10, Secondary 39B62; 43A22;
D O I
10.1007/s40096-020-00368-z
中图分类号
学科分类号
摘要
In this article, the authors prove some bi-additive σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-random operators inequalities and apply these inequalities, together with the fixed-point technique, to get an approximation of the additive σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-random operators in Menger–Banach (MB) spaces. An approximation of random quasi-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-multipliers on MB-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-algebras, associated with the bi-additive σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-random operator inequalities, is also considered.
引用
收藏
页码:325 / 336
页数:11
相关论文
共 74 条
[1]  
Abbas S(2018)Some existence results and stability concepts for partial fractional random integral equations with multiple delay Random Oper. Stoch. Equ. 26 53-63
[2]  
Benchohra M(1973)Complications of semicontinuity in $C^{\ast } $-algebra theory Duke Math. J. 40 785-795
[3]  
Darwish MA(2019)Random Schrödinger operators with a background potential Random Oper. Stoch. Equ. 27 253-259
[4]  
Akemann ChA(2020)Mean square convergent numerical solutions of random fractional differential equations: approximations of moments and density J. Comput. Appl. Math 378 112925-646
[5]  
Pedersen GK(2019)A fixed point theorem in $n$-Banach spaces and Ulam stability J. Math. Anal. Appl. 470 632-5496
[6]  
Asatryan H(2016)On fuzzy normed algebras J. Nonlinear Sci. Appl. 9 5488-67
[7]  
Kirsch W(2013)On the stability of an affine functional equation J. Nonlinear Sci. Appl. 6 60-2056
[8]  
Burgos C(2020)Koopman operator spectrum for random dynamical systems J. Nonlinear Sci. 30 2007-309
[9]  
Cortes J-C(1968)A fixed point theorem of the alternative, for contractions on a generalized complete metric space Bull. Am. Math. Soc. 74 305-959
[10]  
Villafuerte L(2018)Ulam–Hyers stability of fractional impulsive differential equations J. Nonlinear Sci. Appl. 11 953-1294