The Equation f′′′ + ff′′ + g(f′) = 0 and the Associated Boundary Value Problems

被引:0
|
作者
Bernard Brighi
机构
[1] Université de Haute Alsace,Laboratoire de Mathématiques, Informatique et Applications
来源
Results in Mathematics | 2012年 / 61卷
关键词
34B15; 34C11; 76D10; Fluid mechanics; boundary layer; similarity solution; third order nonlinear differential equation; concave solution; convex solution; Blasius inequalities; boundary value problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the concave and convex solutions of the third order similarity differential equation f′′′ + ff′′ + g(f′) = 0, and especially the ones that satisfies the boundary conditions f(0) = a, f′(0) = b and f′(t) → λ as t → + ∞, where λ is a root of the function g. According to the sign of g between b and λ, we obtain results about existence, uniqueness and boundedness of solutions to this boundary value problem, that we denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${({\mathcal P}_{{\bf g};a,b,\lambda})}$$\end{document}. In this way, we pursue and complete the study done in 2008.
引用
收藏
页码:355 / 391
页数:36
相关论文
共 50 条