共 4 条
Asymptotic behavior of Ext for pairs of modules of large complexity over graded complete intersections
被引:0
|作者:
David A. Jorgensen
Liana M. Şega
Peder Thompson
机构:
[1] University of Texas at Arlington,Department of Mathematics
[2] University of Missouri-Kansas City,Division of Computing, Analytics and Mathematics
[3] Institutt for matematiske Fag,Department of Mathematics
[4] NTNU,undefined
[5] Niagara University,undefined
来源:
Mathematische Zeitschrift
|
2022年
/
302卷
关键词:
Complete intersection;
Complexity;
Graded ring;
Hilbert series;
13D02;
13D07;
13A02;
13C40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let M and N be finitely generated graded modules over a graded complete intersection R such that ExtRi(M,N)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Ext}}_R^i(M,N)$$\end{document} has finite length for all i≫0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$i\gg 0$$\end{document}. We show that the even and odd Hilbert polynomials, which give the lengths of ExtRi(M,N)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Ext}}^i_R(M,N)$$\end{document} for all large even i and all large odd i, have the same degree and leading coefficient whenever the highest degree of these polynomials is at least the dimension of M or N. Refinements of this result are given when R is regular in small codimensions.
引用
收藏
页码:1761 / 1784
页数:23
相关论文