Asymptotic behavior of Ext for pairs of modules of large complexity over graded complete intersections

被引:0
|
作者
David A. Jorgensen
Liana M. Şega
Peder Thompson
机构
[1] University of Texas at Arlington,Department of Mathematics
[2] University of Missouri-Kansas City,Division of Computing, Analytics and Mathematics
[3] Institutt for matematiske Fag,Department of Mathematics
[4] NTNU,undefined
[5] Niagara University,undefined
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
Complete intersection; Complexity; Graded ring; Hilbert series; 13D02; 13D07; 13A02; 13C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let M and N be finitely generated graded modules over a graded complete intersection R such that ExtRi(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ext}}_R^i(M,N)$$\end{document} has finite length for all i≫0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\gg 0$$\end{document}. We show that the even and odd Hilbert polynomials, which give the lengths of ExtRi(M,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ext}}^i_R(M,N)$$\end{document} for all large even i and all large odd i, have the same degree and leading coefficient whenever the highest degree of these polynomials is at least the dimension of M or N. Refinements of this result are given when R is regular in small codimensions.
引用
收藏
页码:1761 / 1784
页数:23
相关论文
共 4 条