LaCoO3 – δ as the Material of an Oxygen Electrode for a Molten Carbonate Fuel Cell: II. Catalytic Activity of LaCoO3 – δ for the Electroreduction of Oxygen in Molten (Li0.62K0.38)2CO3

被引:1
作者
Vecherskii S.I. [1 ]
Konopel’ko M.A. [1 ]
Batalov N.N. [1 ]
Zvezdkin M.A. [1 ]
Zvezdkina I.V. [1 ]
机构
[1] Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, ul. Akademicheskaya 20, Yekaterinburg
关键词
electrocatalytic activity; fuel cell; lanthanum cobaltite; molten carbonate; perovskite; reduction of oxygen;
D O I
10.1134/S0036029518020210
中图分类号
学科分类号
摘要
The kinetics of the electroreduction of O2 in the (Li0.62K0.38)2CO3 eutectic melt on the oxide electrode prepared of in situ lithiated LaCoO3 – δ is studied. Superoxide ions and molecular oxygen are shown to be the major electroactive particles under the studied conditions, which correlates with the investigations on a gold electrode. The reaction mechanism on the oxide electrode differs from the mechanisms proposed for the gold electrode. Several mechanisms are proposed to take into account the specificity of the oxide electrode. The exchange current densities are found to be independent of the partial oxygen pressure and to vary in a range of 220–290 mA/cm2 depending on the experimental conditions and the operating mechanism. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:155 / 162
页数:7
相关论文
共 19 条
  • [1] Franke M., Winnick J., A high performance molten carbonate fuel cell cathode, J. Appl. Electrochem., 119, 1, pp. 1-9, (1989)
  • [2] Ganesan P., Colon H., Haran B., Popov B.N., Performance of La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> coated NiO as cathodes for molten carbonate fuel cells, J. Power Sources, 115, 1, pp. 12-18, (2003)
  • [3] Huang B., Shao-rong W., Qing-chun Y., Yu L., Ke-Ao H., Electrochemical characterization of La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>-coated NiO as cathodes for molten carbonate fuel cells, J. Appl. Electrochem., 135, 11, pp. 1145-1156, (2005)
  • [4] Song S.A., Jang S.C., Han J., Yoon S.P., Nam S.W., Oh I.H., Lim T.H., Enhancement of cell performance using a gadolinium strontium cobaltite coated cathode in molten carbonate fuel cells, J. Power Sources, 196, 23, pp. 9900-9905, (2011)
  • [5] Gong Y., Li X., Zhang L., Tharp W., Qin C., Huang K., Promoting electrocatalytic activity of a composite SOFC cathode La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3–δ</sub>/Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2–δ</sub> with molten carbonates, J. Electrochem. Soc., 161, 3, pp. F226-F232, (2014)
  • [6] Anderson M., Lin Y.S., Carbonate–ceramic dualphase membrane for carbon dioxide separation, J. Membr. Sci., 357, 1-2, pp. 122-129, (2010)
  • [7] Baumgartner C.E., Arendt R.H., Iacovangelo C.D., Karas B.R., Molten carbonate fuel cell cathode materials study, J. Electrochem. Soc., 131, 10, pp. 2217-2221, (1984)
  • [8] Yuh C.Y., Selman J.R., Polarization of the molten carbonate fuel cell anode and cathode, J. Electrochem. Soc., 131, 9, pp. 2062-2069, (1984)
  • [9] Morita H., Komoda M., Mugikura Y., Izaki Y., Watanabe T., Masuda Y., Matsuyama T., Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte, J. Power Sources, 112, 2, pp. 509-518, (2002)
  • [10] Makkus R.C., Hemmes K., de Wit J.H.W., A comparative study of NiO(Li), LiFeO<sub>2</sub>, and LiCoO<sub>2</sub> porous cathodes for molten carbonate fuel cells, J. Electrochem. Soc., 141, 12, pp. 3429-3438, (1994)