On the curvature of symmetric products of a compact Riemann surface

被引:0
|
作者
Indranil Biswas
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
14C20; 32Q10; Riemann surface; Symmetric product; Holomorphic bisectional curvature;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact connected Riemann surface of genus at least two. The main theorem of Bökstedt and Romão [3] says that for any positive integer n ≤ 2(genus(X) − 1), the symmetric product Sn(X) does not admit any Kähler metric satisfying the condition that all the holomorphic bisectional curvatures are nonnegative. Our aim here is to give a very simple and direct proof of this result of Bökstedt and Romão.
引用
收藏
页码:413 / 415
页数:2
相关论文
共 50 条