Anisotropic Estimates for the Two-Dimensional Kuramoto–Sivashinsky Equation

被引:0
作者
Said Benachour
Igor Kukavica
Walter Rusin
Mohammed Ziane
机构
[1] Université de Lorraine,Institut Elie Cartan
[2] University of Southern California,Department of Mathematics
[3] Oklahoma State University,Department of Mathematics
来源
Journal of Dynamics and Differential Equations | 2014年 / 26卷
关键词
Kuramoto–Sivashinsky equation; Global solvability; Anisotropic estimates; Dynamical systems ;
D O I
暂无
中图分类号
学科分类号
摘要
We address the global solvability of the Kuramoto–Sivashinsky equation in a rectangular domain [0,L1]×[0,L2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,L_1]\times [0,L_2]$$\end{document}. We give sufficient conditions on the width L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} of the domain, depending on the length L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}, so that the obtained solutions are global. Our proofs are based on anisotropic estimates.
引用
收藏
页码:461 / 476
页数:15
相关论文
共 31 条
[1]  
Avrin JD(1996)Large-eigenvalue global existence and regularity results for the Navier–Stokes equation J. Differ. Equ. 127 365-390
[2]  
Bellout H(2003)Finite time regularity versus global regularity for hyperviscous Hamilton–Jacobi-like equations Nonlinearity 16 1967-1989
[3]  
Benachour S(1993)A global attracting set for the Kuramoto–Sivashinsky equation Comm. Math. Phys. 152 203-214
[4]  
Titi E(2005)New bounds for the Kuramoto–Sivashinsky equation Comm. Pure Appl. Math. 43 297-318
[5]  
Collet P(1994)Stability of the Kuramoto–Sivashinsky and related systems Comm. Pure Appl. Math. 47 293-306
[6]  
Eckmann J-P(2010)Incompressible fluids in thin domains with Navier friction boundary conditions (I) J. Math. Fluid Mech. 12 435-472
[7]  
Epstein H(1992)Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation J. Dyn. Differ. Equ. 4 585-615
[8]  
Stubbe J(2005)Backward behavior of solutions of the Kuramoto–Sivashinsky equation J. Math. Anal. Appl. 307 455-464
[9]  
Giacomelli L(2000)Local dissipativity in J. Dyn. Differ. Equ. 12 533-556
[10]  
Otto F(1985) for the Kuramoto–Sivashinsky equation in spatial dimension 2 Phys. D 16 155-183