Local structured representation for generic object detection

被引:0
作者
Junge Zhang
Kaiqi Huang
Tieniu Tan
Zhaoxiang Zhang
机构
[1] Chinese Academy of Sciences,Center for Research on Intelligent Perception and Computing
[2] Chinese Academy of Sciences,Research Center for Brain
[3] Chinese Academy of Sciences,inspired Intelligence
来源
Frontiers of Computer Science | 2017年 / 11卷
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC;
D O I
暂无
中图分类号
学科分类号
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object’s local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:16
相关论文
共 50 条
[41]   Multi-scale structural kernel representation for object detection [J].
Wang, Hao ;
Wang, Qilong ;
Li, Peihua ;
Zuo, Wangmeng .
PATTERN RECOGNITION, 2021, 110
[42]   Multigrained Angle Representation for Remote-Sensing Object Detection [J].
Wang, Hao ;
Huang, Zhanchao ;
Chen, Zhengchao ;
Song, Ying ;
Li, Wei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[43]   CrossDet plus plus : Growing Crossline Representation for Object Detection [J].
Qiu, Heqian ;
Li, Hongliang ;
Wu, Qingbo ;
Cui, Jianhua ;
Song, Zichen ;
Wang, Lanxiao ;
Zhang, Minjian .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (03) :1093-1108
[44]   RelationRS: Relationship Representation Network for Object Detection in Aerial Images [J].
Liu, Zhiming ;
Zhang, Xuefei ;
Liu, Chongyang ;
Wang, Hao ;
Sun, Chao ;
Li, Bin ;
Huang, Pu ;
Li, Qingjun ;
Liu, Yu ;
Kuang, Haipeng ;
Xiu, Jihong .
REMOTE SENSING, 2022, 14 (08)
[45]   GLCONet: Learning Multisource Perception Representation for Camouflaged Object Detection [J].
Sun, Yanguang ;
Xuan, Hanyu ;
Yang, Jian ;
Luo, Lei .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (07) :13262-13275
[46]   Accurate object detection using local shape descriptors [J].
Anvaripour, Mohammad ;
Ebrahimnezhad, Hossein .
PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) :277-295
[47]   REDUNDANT MULTI-OBJECT DETECTION FOR AUTONOMOUS VEHICLES IN STRUCTURED ENVIRONMENTS [J].
Feraco, Stefano ;
Bonfitto, Angelo ;
Amati, Nicola ;
Tonoli, Andrea .
KOMUNIKACIE - VEDECKE LISTY ZILINSKEJ UNIVERZITY V ZILINE, 2022, 24 (01) :C1-C17
[48]   Selected and refined local attention module for object detection [J].
Luo, Xiaofan ;
Hu, Haifeng .
ELECTRONICS LETTERS, 2020, 56 (14) :712-+
[49]   Global Memory and Local Continuity for Video Object Detection [J].
Han, Liang ;
Yin, Zhaozheng .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :3681-3693
[50]   Fusion of local and global features for efficient object detection [J].
Le, DD ;
Satoh, S .
APPLICATIONS OF NEURAL NETWORKS AND MACHINE LEARNING IN IMAGE PROCESSING IX, 2005, 5673 :106-116