Local structured representation for generic object detection

被引:0
|
作者
Junge Zhang
Kaiqi Huang
Tieniu Tan
Zhaoxiang Zhang
机构
[1] Chinese Academy of Sciences,Center for Research on Intelligent Perception and Computing
[2] Chinese Academy of Sciences,Research Center for Brain
[3] Chinese Academy of Sciences,inspired Intelligence
来源
Frontiers of Computer Science | 2017年 / 11卷
关键词
Local Structured Descriptor; Local Structured Model; Object Representation; Object Structure; Object Detection; PASCAL VOC;
D O I
暂无
中图分类号
学科分类号
摘要
Structure information plays an important role in both object recognition and detection. This paper studies what visual structure is and addresses the problem of structure modeling and representation from two aspects: visual feature and topology model. Firstly, at feature level, we propose Local Structured Descriptor to capture the object’s local structure effectively, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a local structured model with a boosted feature selection and fusion scheme. All experiments are conducted on the challenging PASCAL Visual Object Classes (VOC) datasets from VOC2007 to VOC2010. Experimental results show that our method achieves very competitive performance.
引用
收藏
页码:632 / 648
页数:16
相关论文
共 50 条
  • [1] Local structured representation for generic object detection
    Zhang, Junge
    Huang, Kaiqi
    Tan, Tieniu
    Zhang, Zhaoxiang
    FRONTIERS OF COMPUTER SCIENCE, 2017, 11 (04) : 632 - 648
  • [2] Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
    Xu, Hongyu
    Lv, Xutao
    Wang, Xiaoyu
    Ren, Zhou
    Bodla, Navaneeth
    Chellappa, Rama
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (06) : 1914 - 1927
  • [3] BPJDet: Extended Object Representation for Generic Body-Part Joint Detection
    Zhou, Huayi
    Jiang, Fei
    Si, Jiaxin
    Ding, Yue
    Lu, Hongtao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (06) : 4314 - 4330
  • [4] Regionlets for Generic Object Detection
    Wang, Xiaoyu
    Yang, Ming
    Zhu, Shenghuo
    Lin, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (10) : 2071 - 2084
  • [5] Deep Learning for Generic Object Detection: A Survey
    Liu, Li
    Ouyang, Wanli
    Wang, Xiaogang
    Fieguth, Paul
    Chen, Jie
    Liu, Xinwang
    Pietikainen, Matti
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 261 - 318
  • [6] Deep Learning for Generic Object Detection: A Survey
    Li Liu
    Wanli Ouyang
    Xiaogang Wang
    Paul Fieguth
    Jie Chen
    Xinwang Liu
    Matti Pietikäinen
    International Journal of Computer Vision, 2020, 128 : 261 - 318
  • [7] Occlusion Handling in Generic Object Detection: A Review
    Saleh, Kaziwa
    Szenasi, Sandor
    Vamossy, Zoltan
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 477 - 484
  • [8] KNOWLEDGE DISTILLATION FOR OBJECT DETECTION: FROM GENERIC TO REMOTE SENSING DATASETS
    Hoang-An Le
    Minh-Tan Pham
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6194 - 6197
  • [9] Object Representation Fusing Global and Local Features
    Li, Tianwen
    Gao, Yun
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1022 - 1026
  • [10] Structural Sparse Representation for Object Detection
    FANG Wenhua
    CHEN Jun
    HU Ruimin
    Wuhan University Journal of Natural Sciences, 2017, 22 (04) : 318 - 322