Well-Posedness of the Dirichlet Problem for a Degenerating Many-Dimensional Equation of Mixed Type

被引:0
|
作者
Aldashev S.A. [1 ]
机构
[1] Abai Kazakhstan National Pedagogic University, Tolebi Str., 86, Almaty
关键词
D O I
10.1007/s10958-018-3682-7
中图分类号
学科分类号
摘要
It is shown that the Dirichlet problem for a degenerating many-dimensional equation of mixed type in a cylindrical domain is uniquely solvable. A criterion for the uniqueness of a regular solution is also established. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:354 / 366
页数:12
相关论文
共 50 条
  • [21] SOBOLEV WELL-POSEDNESS CRITERION FOR THE DIRICHLET PROBLEM FOR THE POISSON EQUATION IN LIPSCHITZ DOMAINS. II
    Parfenov, Anton Igorevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 211 - 244
  • [22] Well-Posedness of the Mixed Problem for the Degenerate Multi-Dimensional Elliptic Equations
    Aldashev, S.
    Tanirbergen, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (02): : 61 - 71
  • [23] On the Well-posedness of the Nonlocal Boundary Value Problem for the Differential Equation of Elliptic Type
    Ashyralyev, Allaberen
    Hamad, Ayman
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [24] ON THE WELL-POSEDNESS PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Killip, Rowan
    Ntekoume, Maria
    Visan, Monica
    ANALYSIS & PDE, 2023, 16 (05): : 1245 - 1270
  • [25] On well-posedness of the mixed problem for nonstrictly hyperbolic operators
    Zakharchenko P.A.
    Journal of Mathematical Sciences, 2006, 139 (6) : 7079 - 7086
  • [26] A well-posedness result of a characteristic hyperbolic mixed problem
    Brahimi, Sihame
    Mokrane, Ahmed Zerrouk
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (01)
  • [27] WELL-POSEDNESS OF A MIXED HEMIVARIATIONAL-VARIATIONAL PROBLEM
    Sofonea, Mircea
    Matei, Andaluzia
    FIXED POINT THEORY, 2023, 24 (02): : 721 - 742
  • [28] Well-posedness for a class of mixed problem of wave equations
    Liu, Haihong
    Su, Ning
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 19 - 27
  • [29] A well-posedness result of a characteristic hyperbolic mixed problem
    Sihame Brahimi
    Ahmed Zerrouk Mokrane
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [30] Well-Posedness of SI Problem for an Elliptic Equation in a Banach Space with Mixed Boundary Conditions
    Ashyralyev, A.
    Ashyralyyev, C.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3241 - 3249