Self-oscillating systems with chaotic dynamics based on the van der Pol-Duffing equations

被引:0
|
作者
E. V. Kal’yanov
V. Ya. Kislov
机构
关键词
Mathematical Model; Operating Mode; Chaotic Dynamic; Regular Operating; Partial Oscillator;
D O I
暂无
中图分类号
学科分类号
摘要
Mathematical models of the systems of the coupled van der Pol-Duffing equations with the chaotizing feedback algorithm (CFA) and the parametric chaotization algorithm (PCA) are considered. Numerical methods are used to analyze particular cases of the systems that do not employ the CFA and have mutual or unidirectional resistive coupling. The chaotic modes formed under asynchronous interactions of the oscillations of partial oscillators are considered. It is demonstrated that oscillations can be chaotized using the CFA or PCA when regular operating modes are realized in the absence of these algorithms.
引用
收藏
页码:59 / 67
页数:8
相关论文
共 50 条
  • [1] Self-oscillating systems with chaotic dynamics based on the van der Pol-Duffing equations
    Kal'yanov, E. V.
    Kislov, V. Ya.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2006, 51 (01) : 59 - 67
  • [2] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    Belykh, V. N.
    Pankratova, E. V.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 274 - 284
  • [3] Chaotic dynamics of two Van der Pol-Duffing oscillators with Huygens coupling
    V. N. Belykh
    E. V. Pankratova
    Regular and Chaotic Dynamics, 2010, 15 : 274 - 284
  • [4] On the dynamics of a Van der Pol-Duffing snap system
    Wiggers, Vinicius
    Rech, Paulo C.
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (02):
  • [5] Synchronization in small assemblies of van der Pol-Duffing chaotic oscillators
    Güémez, J
    Matías, MA
    PROCEEDINGS OF THE WORKSHOP ON DISCRETELY-COUPLED DYNAMICAL SYSTEMS, 1997, 9 : 157 - 162
  • [6] Stability and dynamics of a controlled van der Pol-Duffing oscillator
    Ji, JC
    Hansen, CH
    CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 555 - 570
  • [7] Bifurcations of the van der Pol-Duffing oscillator
    Pusenjak, R
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2003, 49 (7-8): : 370 - 384
  • [8] Analysis and controlling of hopf bifurcation for chaotic van der pol-duffing system
    Cai, Ping
    Tang, Jia-Shi
    Li, Zhen-Bo
    Mathematical and Computational Applications, 2014, 19 (03) : 184 - 193
  • [9] General synchronization dynamics of coupled Van der Pol-Duffing oscillators
    Kadji, H. G. Enjieu
    Yamapi, R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (02) : 316 - 328
  • [10] DYNAMICAL BEHAVIORS OF VAN DER POL-DUFFING SYSTEMS WITH INDEFINITE DEGREE
    Chen, Hebai
    Feng, Zhaosheng
    Li, Zhijie
    Wang, Zhaoxia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (01) : 281 - 317