Families of Optimal Derivative-Free Two- and Three-Point Iterative Methods for Solving Nonlinear Equations

被引:0
作者
T. Zhanlav
Kh. Otgondorj
O. Chuluunbaatar
机构
[1] Institute of Mathematics,
[2] National University of Mongolia,undefined
[3] Division of Applied Sciences,undefined
[4] Mongolian University of Science and Technology,undefined
[5] Joint Institute for Nuclear Research,undefined
来源
Computational Mathematics and Mathematical Physics | 2019年 / 59卷
关键词
nonlinear equations; two- and three-point iterations; necessary and sufficient conditions; optimal methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:864 / 880
页数:16
相关论文
共 92 条
  • [1] Liu L.(2010)Eighth-order methods of high efficiency index for solving nonlinear equations Appl. Math. Comput. 215 3449-3454
  • [2] Wang X.(2014)Multipoint methods for solving nonlinear equations: A survey Appl. Math. Comput. 226 635-660
  • [3] Petković M. S.(2010)A family of three-point methods of optimal order for solving nonlinear equations J. Comput. Appl. Math. 233 2278-2284
  • [4] Neta B.(2010)New eighth-order iterative methods for solving non-linear equations J. Comput. Appl. Math. 234 1611-1620
  • [5] Petković L. D.(2017)Generating function method for constructing new iterations Appl. Math. Comput. 315 414-423
  • [6] Džunić J.(2017)Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations Comput. Math. Math. Phys. 57 1090-1100
  • [7] Thukral R.(2013)A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations J. Comput. Appl. Math. 252 95-102
  • [8] Petković M. S.(2017)A general class of derivative free with memory root solvers Appl. Math. Phys. 79 19-28
  • [9] Wang X.(2017)and S. Bajaj, “Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations Appl. Math. Comput. 315 224-245
  • [10] Liu L.(2014)Algorithm for forming derivative-free optimal methods Numer. Algorithms 5 809-842