Randomized Operators on n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\times n}$$\end{document} Matrices and Applications

被引:0
作者
S. V. Astashkin
F. A. Sukochev
机构
[1] Samara University,School of Mathematics and Statistics
[2] University of New South Wales,undefined
关键词
Rearrangement invariant space; symmetric sequence space; independent random variables; doubly stochastic matrix; Orlicz space;
D O I
10.1007/s00020-016-2322-1
中图分类号
学科分类号
摘要
Some combinatorial and probabilistic estimates motivated by earlier works due to S. Kwapien and C. Schütt are proved. We study these estimates in the general setting of rearrangement invariant function and sequence spaces and identify the class of function spaces in which such estimates hold. We demonstrate the sharpness of our results and present some applications, one of which is an alternative proof of a familiar Raynaud–Schütt theorem describing symmetric subspaces in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_1}$$\end{document}.
引用
收藏
页码:333 / 358
页数:25
相关论文
共 19 条
[1]  
Astashkin S.V.(2005)Series of independent random variables in rearrangement invariant spaces: an operator approach Isr. J. Math. 145 125-156
[2]  
Sukochev F.A.(2010)Best constants in Rosenthal-type inequalities and the Kruglov operator Ann. Probab. 38 1986-2008
[3]  
Astashkin S.V.(2011)Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property Isr. J. Math. 184 455-476
[4]  
Sukochev F.A.(2013)A probabilistic version of Rosenthal’s inequality Proc. Am. Math. Soc. 141 3539-3547
[5]  
Astashkin S.V.(1989)Sums of independent random variables in rearrangement invariant function spaces Ann. Probab. 17 789-808
[6]  
Sukochev F.A.(2006)The optimal order for the p-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates Positivity 10 201-230
[7]  
Astashkin S.V.(1985)Some combinatorial and probabilistic inequalities and their applications to Banach space theory Stud. Math. 82 91-106
[8]  
Tikhomirov K.E.(1989)Some combinatorial and probabilistic inequalities and their application to Banach space theory II Stud. Math. 95 141-154
[9]  
Johnson W.B.(2002)Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables Isr. J. Math. 131 51-60
[10]  
Schechtman G.(1988)Some results on symmetric subspaces of Stud. Math. 89 27-35