Scalings of the tidally induced bottom boundary layer in a shallow sea under a surface heating

被引:0
作者
Kazunori Akitomo
Masahiro Hirano
Yuya Kinugawa
Kei Sakamoto
Kiyoshi Tanaka
机构
[1] Kyoto University,Department of Geophysics, Graduate School of Science
[2] Meteorological Research Institute,Atmosphere and Ocean Research Institute
[3] The University of Tokyo,undefined
来源
Journal of Oceanography | 2016年 / 72卷
关键词
Tidally induced bottom boundary layer; Turbulence; Tidal mixing front; Scaling argument; DNS;
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated properties of the tidally induced bottom boundary layer (TBBL) in a shallow sea under a surface heating, by scale argument and direct numerical simulation (DNS) experiment. Applying the existing scalings of the boundary layer, it is found that the height of TBBL Htbbl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rm tbbl}$$\end{document} and the efficiency of tidal mixing ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document} are scaled to (u∗4H/|σ+f|Bs)1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_{*}^{4} H /|\sigma +f| B_{\rm s})^{1/3}$$\end{document} and Hhom/Htbbl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rm hom}/H_{\rm tbbl}$$\end{document}, respectively, where u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{*}$$\end{document} is the friction velocity, σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} the tidal frequency, f the inertial frequency (the Coriolis parameter), Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\rm s}$$\end{document} the surface buoyancy flux, H the water depth, and Hhom=u∗/|σ+f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rm hom}=u_*/|\sigma +f|$$\end{document} the height of TBBL in a homogeneous ocean. Results of DNS experiment agree with these scalings for fairly wide ranges of u∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_*$$\end{document} (or tidal amplitude Utide\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\rm tide}$$\end{document}), H, Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{s}$$\end{document}, and |σ/f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\sigma /f|$$\end{document}. In exceptional cases with slower Earth’s rotations, weaker tidal flows, and shallower water depths, turbulence occurs intermittently and the scaling underestimates Htbbl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rm tbbl}$$\end{document} and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}. The efficiency of tidal mixing ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document} varies from less than 1 to 7 % for the experimental range. This variation can partly explain the reason why the critical value of Simpson–Hunter parameter, which is an index of the position of tidal mixing front is different from place to place around the world.
引用
收藏
页码:541 / 552
页数:11
相关论文
共 51 条
[1]  
Awaji T(1980)Tidal exchange through a strait: a numerical experiment using a simple model basin J Phys Oceanogr 10 1499-1508
[2]  
Imasato N(1999)Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer J Atmos Sci 56 891-900
[3]  
Kunishi H(1985)On determining current profiles in oscillatory flows Appl Math Model 9 419-428
[4]  
Coleman GN(1983)On the vertical structure of tidal currents in a homogeneous sea Geophys J R Astron Soc 73 65-82
[5]  
Davies AM(1978)Tidal mixing versus thermal stratification in the Bay of Fundy and the Gulf of Maine Atmos Ocean 16 403-423
[6]  
Fang G(1995)A barotropic model of the currents off SE South America J Geophys Res 100 13427-13440
[7]  
Ichiye T(2006)Tidal stirring and its impact on water column stability and property distributions in a semi-enclosed shelf sea (Seto Inland Sea, Japan) Cont Shelf Res 26 1295-1306
[8]  
Garrett CJR(1989)Tidal fronts in the south-eastern Hwanghae (Yellow Sea) Cont Shelf Res 9 527-546
[9]  
Keeley JR(1978)Tidal fronts on the shelf seas around the British Isles J Geophys Res 83 4615-4622
[10]  
Greenberg DA(2006)Instability of the tidally induced bottom boundary layer in the rotating frame and their mixing effect Dyn Atmos Oceans 41 191-211