Commutative Algebras of Toeplitz Operators on the Reinhardt Domains

被引:0
作者
Raul Quiroga-Barranco
Nikolai Vasilevski
机构
[1] Centro de Investigación en Matemáticas,Departamento de Matemáticas
[2] CINVESTAV,undefined
来源
Integral Equations and Operator Theory | 2007年 / 59卷
关键词
Primary 47B35; Secondary 32A07, 32A36; Toeplitz operator; Bergman space; separately radial symbol; Reinhardt domain; commutative ; -algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a bounded logarithmically convex complete Reinhardt domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{C}}^n$$ \end{document} centered at the origin. Generalizing a result for the one-dimensional case of the unit disk, we prove that the C*-algebra generated by Toeplitz operators with bounded measurable separately radial symbols (i.e., symbols depending only on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|z_1|, |z_2|, \ldots , |z_n|)$$ \end{document} is commutative.
引用
收藏
页码:67 / 98
页数:31
相关论文
empty
未找到相关数据