Let D be a bounded logarithmically convex complete Reinhardt domain in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{C}}^n$$
\end{document} centered at the origin. Generalizing a result for the one-dimensional case of the unit disk, we prove that the C*-algebra generated by Toeplitz operators with bounded measurable separately radial symbols (i.e., symbols depending only on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$|z_1|, |z_2|, \ldots , |z_n|)$$
\end{document} is commutative.