A class of functional equations associated with almost periodic functions

被引:0
作者
J. M. Sepulcre
T. Vidal
机构
[1] University of Alicante,Department of Mathematics
[2] University of Alicante,Faculty of Sciences
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Almost periodic functions; Dirichlet series; Bochner–Fejér summation method; Zeros of analytic functions; Functional equations; 42A75; 30D05; 39B32; 39Bxx; 30Axx;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we will get a class of functional equations involving a countable set of terms, summed by the well known Bochner–Fejér summation procedure, which are closely associated with the set of almost periodic functions. We will show that the zeros of a prefixed almost periodic function determine analytic solutions of such a functional equation associated with it, and we will obtain other solutions which are analytic or meromorphic on a certain domain.
引用
收藏
页码:91 / 105
页数:14
相关论文
共 12 条
  • [1] Bohr H(1926)Zur Theorie der fastperiodischen Funktionen. (German) III. Dirichletentwicklung analytischer Funktionen Acta Math. 47 237-281
  • [2] Favorov SYu(2001)Zeros of holomorphic almost-periodic functions, zeros of holomorphic almost periodic functions J. Anal. Math. 84 51-66
  • [3] Mas A(2019)The projections of the zeros of exponential polynomials with complex frequencies Colloq. Math. 158 91-102
  • [4] Sepulcre JM(2008)A note on the functional equation J. Math. Anal. Appl. 340 466-475
  • [5] Mora G(2013)The zeros of Riemann zeta partial sums yield solutions to Mediterr. J. Math. 10 1221-1232
  • [6] Mora G(2015)On the analytic solutions of the functional equations Mediterr. J. Math. 12 667-678
  • [7] Sepulcre JM(2001)Generalization of Vandermonde determinants Linear Algebra Appl. 336 201-204
  • [8] Sepulcre JM(undefined)undefined undefined undefined undefined-undefined
  • [9] Vidal T(undefined)undefined undefined undefined undefined-undefined
  • [10] Yang SJ(undefined)undefined undefined undefined undefined-undefined