Heavy-traffic extreme value limits for Erlang delay models

被引:1
作者
Guodong Pang
Ward Whitt
机构
[1] Columbia University,IEOR Department
来源
Queueing Systems | 2009年 / 63卷
关键词
Erlang models; Many-server queues; Extreme values; Heavy traffic; Diffusion approximations; Strong approximations; Limit theorems; 60K25; 60F05; 60G70; 90B22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximum queue length and the maximum number of idle servers in the classical Erlang delay model and the generalization allowing customer abandonment—the M/M/n+M queue. We use strong approximations to show, under regularity conditions, that properly scaled versions of the maximum queue length and maximum number of idle servers over subintervals [0,t] in the delay models converge jointly to independent random variables with the Gumbel extreme value distribution in the quality-and-efficiency-driven (QED) and ED many-server heavy-traffic limiting regimes as n and t increase to infinity together appropriately; we require that tn→∞ and tn=o(n1/2−ε) as n→∞ for some ε>0.
引用
收藏
相关论文
共 34 条
  • [1] Artalejo J.R.(2007)Applications of maximum queue lengths to call center management Comput. Oper. Res. 34 983-996
  • [2] Economou A.(2007)Algorithmic analysis of the maximum queue length in a busy period for the INFORMS J. Comput. 19 121-126
  • [3] Gomez-Corral A.(1998)/ Extremes 1 137-168
  • [4] Artalejo J.R.(1998)/ Extremes 1 47-80
  • [5] Economou A.(1956) retrial queue Duke Math. J. 23 143-145
  • [6] Lopez-Herrero M.J.(1982)Extreme value theory for queues via cycle maxima Stoch. Process. Their Appl. 13 1-9
  • [7] Asmussen S.(2003)Extremal behavior of diffusion models in finance Manuf. Serv. Oper. Manag. 5 79-141
  • [8] Borkovec M.(2002)A limit theorem for the maximum of normalized sums of independent random variables Manuf. Serv. Oper. Manag. 4 208-227
  • [9] Klüppelberg C.(2007)Maximum and minimum of one-dimensional diffusions Prod. Oper. Manag. 16 13-39
  • [10] Darling D.A.(1995)Telephone call centers: tutorial, review and research prospects Oper. Res. Lett. 18 107-111