Some Tauberian conditions on logarithmic density

被引:0
作者
Adem Kılıçman
Stuti Borgohain
Mehmet Küçükaslan
机构
[1] University of Putra Malaysia,Department of Mathematics and Institute for Mathematical Research
[2] Institute of Chemical Technology,Department of Mathematics
[3] Mersin University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Statistical convergence; -convergence; de la Vallee Poussin mean; Logarithmic density;
D O I
暂无
中图分类号
学科分类号
摘要
This article is based on the study on the λ-statistical convergence with respect to the logarithmic density and de la Vallee Poussin mean and generalizes some results of logarithmic λ-statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-summability theorems. Hardy’s and Landau’s Tauberian theorems to the statistical convergence, which was introduced by Fast long back in 1951, have been extended by J.A. Fridy and M.K. Khan (Proc. Am. Math. Soc. 128:2347–2355, 2000) in recent years. In this article we try to generalize some Tauberian conditions on logarithmic statistical convergence and logarithmic (V,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(V,\lambda )$\end{document}-statistical convergence, and we find some new results on it.
引用
收藏
相关论文
共 22 条
  • [1] Fridy J.A.(2000)Statistical extensions of some classical Tauberian theorems Proc. Am. Math. Soc. 128 2347-2355
  • [2] Khan M.K.(1951)Sur la convergence statistique Colloq. Math. 2 241-244
  • [3] Fast H.(1951)Sur la convergence ordinaire et la convergence asymptotique Colloq. Math. 2 73-84
  • [4] Steinhaus H.(2016)On strongly almost lacunary statistical Filomat 30 689-697
  • [5] Savaş E.(2004)-convergence and lacunary Analysis 24 127-145
  • [6] Borgohin S.(2011)-statistical convergence Appl. Math. Lett. 24 320-324
  • [7] Fridy J.A.(2000)On statistical convergence Math. Slovaca 50 111-115
  • [8] Mursaleen M.(2013)Statistical summability and approximation by de la Vallee-Poussin mean Adv. Differ. Equ. 2013 139-150
  • [9] Alotaibi A.(1980)-Statistical convergence Math. Slovaca 30 277-287
  • [10] Mursaleen M.(2002)Logarithmic density and logarithmic statistical convergence J. Math. Anal. Appl. 275 695-703