An hp-version interior penalty discontinuous Galerkin method for the quad-curl eigenvalue problem

被引:0
作者
Jiayu Han
Zhimin Zhang
机构
[1] Guizhou Normal University,School of Mathematical Sciences
[2] Wayne State University,Department of Mathematics
来源
BIT Numerical Mathematics | 2023年 / 63卷
关键词
discontinuous Galerkin method; Quad-curl eigenvalue problem; Error estimate; Discrete compactness; 65N25; 65N30; 35Q60; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
An hp-version interior penalty discontinuous Galerkin method under nonconforming meshes is proposed to solve the quad-curl eigenvalue problem. We prove well-posedness of the numerical scheme for the quad-curl equation and then derive an error estimate in a mesh-dependent norm, which is optimal with respect to h but has different p-version error bounds under conforming and nonconforming tetrahedron meshes. The hp-version discrete compactness of the DG space is established for the convergence proof. The performance of the method is demonstrated by numerical experiments using conforming/nonconforming meshes and h-version/p-version refinement. The optimal h-version convergence rate and the exponential p-version convergence rate are observed.
引用
收藏
相关论文
共 117 条
  • [1] Arnold DN(2001)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
  • [2] Brezzi F(1987)The hp version of the finite element method with quasiuniform meshes M2AN 21 199-238
  • [3] Cockburn B(1977)Finite element methods for elliptic equations using nonconforming elements Math. Comput. 31 45-59
  • [4] Marini LD(2009)Data structures and requirements for hp finite element software ACM Trans. Math. Softw. 36 1-31
  • [5] Babus̆ka I(2009)Optimal error estimation for H(curl)-conforming p-interpolation in two dimensions SIAM J. Numer. Anal. 47 3977-3989
  • [6] Suri M(2000)Fortin operator and discrete compactness for edge elements Numer. Math. 87 229-246
  • [7] Baker GA(2011)Discrete compactness for the p-version of discrete differential forms SIAM J. Numer. Anal. 49 135-158
  • [8] Bangerth W(2022)Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in 2d IMA J. Numer. Anal. 43 663-691
  • [9] Kayser-Herold O(2009)Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements Numer. Math. 113 497-518
  • [10] Bespalov A(2007)Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes J. Comput. Appl. Math. 204 317-333