Invariant subalgebras of involutorial quaternion division algebras

被引:0
|
作者
Prokopchuk A.V. [1 ]
Yanchevskii V.I. [1 ]
机构
[1] Institute of Mathematics of the Belarus National Academy of Science, Minsk
关键词
Field Extension; Division Algebra; Quadratic Field; Quaternion Division Algebra; Quadratic Field Extension;
D O I
10.1007/s10958-012-0833-0
中图分类号
学科分类号
摘要
Let K/k be a separable quadratic field extension. For quaternion division algebras with K/k involutions τ, their τ-invariant k-subalgebras are studied. A complete description of such subalgebras up to k-isomorphisms is given. Bibliography: 6 titles. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:685 / 691
页数:6
相关论文
共 50 条
  • [41] COMPLETE COMMUTATIVE SUBALGEBRAS IN POLYNOMIAL POISSON ALGEBRAS: A PROOF OF THE MISCHENKO-FOMENKO CONJECTURE
    Bolsinov, Alexey V.
    THEORETICAL AND APPLIED MECHANICS, 2016, 43 (02) : 145 - 168
  • [42] Inverse of Level-m Π-Circulant Matrices over Quaternion Division Algebra
    Sun, Dehua
    Liu, Sanyang
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 270 - 273
  • [43] Projective bases of division algebras and groups of central type
    Aljadeff, E
    Haile, D
    Natapov, M
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 146 (1) : 317 - 335
  • [44] On Classification Of Associative Non-Division Genetic Algebras
    Ganikhodjaev, Nasir
    Dustmuradova, Gavhar
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 26 - 30
  • [45] On the exponent of a certain quotient of Whitehead groups of division algebras
    Motiee, Mehran
    COMMUNICATIONS IN ALGEBRA, 1600, 1 (00): : 0022-2860 - 1872-8014
  • [46] Decompositions of matrices over division algebras into products of commutators
    Mai Hoang Bien
    Truong Huu Dung
    Nguyen Thi Thai Ha
    Tran Nam Son
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 646 : 119 - 131
  • [47] On formally real division algebras and quasifields of finite rank
    Kalhoff F.B.
    Journal of Geometry, 1998, 61 (1-2) : 74 - 82
  • [48] A sum-product estimate in algebraic division algebras
    Mei-Chu Chang
    Israel Journal of Mathematics, 2005, 150 : 369 - 380
  • [49] A GENERAL APPROACH TO FINITE-DIMENSIONAL DIVISION ALGEBRAS
    Dieterich, Ernst
    COLLOQUIUM MATHEMATICUM, 2012, 126 (01) : 73 - 86
  • [50] Projective bases of division algebras and groups of central type
    Eli Aljadeff
    Darrell Haile
    Michael Natapov
    Israel Journal of Mathematics, 2005, 146 : 317 - 335