Big data and machine learning for materials science

被引:80
作者
Rodrigues Jr, Jose F. [1 ]
Florea, Larisa [2 ]
de Oliveira, Maria C. F. [1 ]
Diamond, Dermot [3 ]
Oliveira Jr, Osvaldo N. [4 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, SP, Brazil
[2] Univ Dublin, Trinity Coll Dublin, SFI Res Ctr Adv Mat & Bioengn Res, Dublin, Ireland
[3] Dublin City Univ, Insight Ctr Data Analyt, Natl Ctr Sensor Res, Dublin, Ireland
[4] Univ Sao Paulo, Sao Carlos Inst Phys, Sao Carlos, SP, Brazil
来源
DISCOVER MATERIALS | 2021年 / 1卷 / 01期
基金
巴西圣保罗研究基金会; 爱尔兰科学基金会; 欧洲研究理事会;
关键词
Materials discovery; Big data; Machine learning; Deep learning; Evolutionary algorithms; Chemical sensors; Internet of Things; WIRELESS SENSOR NETWORKS; HIGH-THROUGHPUT; INFORMATION VISUALIZATION; COMPUTATIONAL CHEMISTRY; MATERIALS GENOME; DRUG DISCOVERY; EXPERT-SYSTEM; DESIGN; PREDICTION; CHALLENGES;
D O I
10.1007/s43939-021-00012-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we review aspects of leading-edge research and innovation in materials science that exploit big data and machine learning (ML), two computer science concepts that combine to yield computational intelligence. ML can accelerate the solution of intricate chemical problems and even solve problems that otherwise would not be tractable. However, the potential benefits of ML come at the cost of big data production; that is, the algorithms demand large volumes of data of various natures and from different sources, from material properties to sensor data. In the survey, we propose a roadmap for future developments with emphasis on computer-aided discovery of new materials and analysis of chemical sensing compounds, both prominent research fields for ML in the context of materials science. In addition to providing an overview of recent advances, we elaborate upon the conceptual and practical limitations of big data and ML applied to materials science, outlining processes, discussing pitfalls, and reviewing cases of success and failure.
引用
收藏
页数:27
相关论文
共 180 条
[1]  
Abbasi Aqeel-Ur-Rehman., 2014, COMPUT STAND INTER, V36, P263, DOI [10.1016/j.csi.2011.03.004, DOI 10.1016/j.csi.2011.03.004]
[2]  
Aileni RM, 2016, ELearning Vision, V1, ppp328, DOI [10.12753/2066-026X-16-046, DOI 10.12753/2066-026X-16-046]
[3]   On the role of words in the network structure of texts: Application to authorship attribution [J].
Akimushkin, Camilo ;
Amancio, Diego R. ;
Oliveira, Osvaldo N., Jr. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 495 :49-58
[4]   CLINICAL CONTROL OF DIABETES BY ARTIFICIAL PANCREAS [J].
ALBISSER, AM ;
LEIBEL, BS ;
EWART, TG ;
DAVIDOVAC, Z ;
BOTZ, CK ;
ZINGG, W ;
SCHIPPER, H ;
GANDER, R .
DIABETES, 1974, 23 (05) :397-404
[5]  
Alpaydin E., 2010, INTRO MACHINE LEARNI
[6]   Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform [J].
Alvarez-Moreno, M. ;
de Graaf, C. ;
Lopez, N. ;
Maseras, F. ;
Poblet, J. M. ;
Bo, C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) :95-103
[7]  
[Anonymous], 2012, P 25 INT C NEUR INF
[8]  
[Anonymous], PART INTEGRATED GLOB
[9]   Machine-Learning Guided Quantum Chemical and Molecular Dynamics Calculations to Design Novel Hole-Conducting Organic Materials [J].
Antono, Erin ;
Matsuzawa, Nobuyuki N. ;
Ling, Julia ;
Saal, James Edward ;
Arai, Hideyuki ;
Sasago, Masaru ;
Fujii, Eiji .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (40) :8330-8340
[10]  
Argo, 2024, SEANOE