Implicit algebraic geometry on categories of universal algebras

被引:0
作者
Pinus A.G. [1 ]
机构
[1] Novosibirsk State Technical University, Novosibirsk, 630092
关键词
Algebraic; Conditional algebraic geometries of universal algebras; Implicit operations; Pseudovarieties; Varieties;
D O I
10.3103/S1066369X12050040
中图分类号
学科分类号
摘要
Using the notion of an implicit operation on universal algebras, we redefine basic notions of the algebraic geometry of universal algebras. The results obtained for the implicit algebraic geometry imply (as special cases) the known results on the conditional geometric and algebraic geometric comparability of algebras. © 2012. Allerton Press, Inc.
引用
收藏
页码:34 / 38
页数:4
相关论文
共 10 条
  • [1] Plotkin B.I., Some notions of algebraic geometry in universal algebra, Algebra i Analiz, 9, 4, pp. 224-248, (1997)
  • [2] Plotkin B., Some results and problems related to universal algebraicgeometry, Int. J. Algebra Comput, 17, 5-6, pp. 1133-1164, (2007)
  • [3] Baumslag G., Myasnikov A., Remeslennikov V., Algebraicgeometry overgroups. I. Algebraic sets and ideal theory, J. Algebra, 219, 2, pp. 16-77, (1999)
  • [4] Pinus A.G., Geometric scales for varieties of algebras and quasi-identities, Matem. Trudy, 12, 2, pp. 160-169, (2009)
  • [5] Bludov V., Gusev G., On geometric equivalence of groups, Trudy Inst.Matem. IMekhanikiUrORAN, 13, 1, pp. 56-77, (2007)
  • [6] Pinus A.G., New algebraic invariants for definable subsets in universal algebra, Algebra i Logika, 50, 2, pp. 209-230, (2011)
  • [7] Pinus A.G., Conditional Terms and Their Applications in Algebra and Computation Theory, (2002)
  • [8] Pinus A.G., Conditional terms and their applications in algebra and computation theory, Usp. Mat. Nauk, 56, 4, pp. 35-72, (2001)
  • [9] Pinus A.G., On the implicit conditional operations defined on pseudo-universal classes, Fundament. i Prikl. Matem, 10, 4, pp. 171-182, (2004)
  • [10] Pinus A.G., Positively conditional pseudovarieties and implicitoperations on them, Sib. Matem. Zhurn, 47, 2, pp. 72-82, (2006)