Strong quantum nonlocality for multipartite entangled states

被引:0
|
作者
Zhi-Chao Zhang
Guo-Jing Tian
Tian-Qing Cao
机构
[1] University of Science and Technology Beijing,School of Mathematics and Physics
[2] Chinese Academy of Sciences,Institute of Computing Technology
[3] Tiangong University,School of Mathematical Sciences
来源
Quantum Information Processing | 2021年 / 20卷
关键词
Local operations and classical communication; Nonlocality; Local distinguishability; Entangled states;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Halder et al. (in Phys Rev Lett 122:040403, 2019) present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in 2⊗2⊗2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \otimes 2 \otimes 2$$\end{document} quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system with N⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geqslant 3$$\end{document}. Finally, we also construct a class of strong nonlocality of orthogonal entangled states in d⊗d⊗⋯⊗d,d⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\otimes d\otimes \cdots \otimes d, d\geqslant 3$$\end{document}. Our results extend the concept of strong nonlocality for entangled states.
引用
收藏
相关论文
共 50 条
  • [21] Quantum entanglement and quantum nonlocality for N-photon entangled states
    Sun, YH
    Kuang, LM
    CHINESE PHYSICS, 2006, 15 (04): : 681 - 686
  • [22] I⟩-Nonlocality of Multipartite States and the Related Nonlocality Inequalities
    Yang, Ying
    Cao, Huai-xin
    Chen, Liang
    Huang, Yongfeng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (05) : 1498 - 1515
  • [23] Preparation of multipartite entangled states used for quantum information networks
    Su XiaoLong
    Jia XiaoJun
    Xie ChangDe
    Peng KunChi
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (07) : 1210 - 1217
  • [24] Multipartite entangled states in coupled quantum dots and cavity QED
    Wang, XG
    Feng, M
    Sanders, BC
    PHYSICAL REVIEW A, 2003, 67 (02):
  • [25] Preparation of multipartite entangled states used for quantum information networks
    XiaoLong Su
    XiaoJun Jia
    ChangDe Xie
    KunChi Peng
    Science China Physics, Mechanics & Astronomy, 2014, 57 : 1210 - 1217
  • [26] Exposure of subtle multipartite quantum nonlocality
    M. M. Taddei
    T. L. Silva
    R. V. Nery
    G. H. Aguilar
    S. P. Walborn
    L. Aolita
    npj Quantum Information, 7
  • [27] Preparation of multipartite entangled states used for quantum information networks
    SU XiaoLong
    JIA XiaoJun
    XIE ChangDe
    PENG KunChi
    Science China(Physics,Mechanics & Astronomy), 2014, (07) : 1210 - 1217
  • [28] Quantum Entanglement Swapping between Two Multipartite Entangled States
    Su, Xiaolong
    Tian, Caixing
    Deng, Xiaowei
    Li, Qiang
    Xie, Changde
    Peng, Kunchi
    PHYSICAL REVIEW LETTERS, 2016, 117 (24)
  • [29] Minimal nonlocality in multipartite quantum systems
    Xu, Guang-Bao
    Zhang, Yong-Qi
    Jiang, Dong-Huan
    PHYSICAL REVIEW A, 2025, 111 (02)
  • [30] Unified criteria for multipartite quantum nonlocality
    Cavalcanti, E. G.
    He, Q. Y.
    Reid, M. D.
    Wiseman, H. M.
    PHYSICAL REVIEW A, 2011, 84 (03):