Extreme eigenvalues of principal minors of random matrices with moment conditions

被引:0
|
作者
Jianwei Hu
Seydou Keita
Kang Fu
机构
[1] Central China Normal University,School of Mathematics and Statistics
来源
Journal of the Korean Statistical Society | 2023年 / 52卷
关键词
Extreme eigenvalues; Principal minors; Random matrix; Wigner matrix Wishart matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Let x1,…,xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x}_1,\ldots ,\varvec{x}_n$$\end{document} be a random sample of size n from a p-dimensional population distribution, where p=p(n)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=p(n)\rightarrow \infty$$\end{document}. Consider a symmetric matrix W=X⊤X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=X^\top X$$\end{document} with parameters n and p, where X=(x1,…,xn)⊤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=(\varvec{x}_1,\ldots ,\varvec{x}_n)^\top$$\end{document}. In this paper, motivated by model selection theory in high-dimensional statistics, we mainly investigate the asymptotic behavior of the eigenvalues of the principal minors of the random matrix W. For the Gaussian case, under a simple condition that m=o(n/logp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=o(n/\log p)$$\end{document}, we obtain the asymptotic results on maxima and minima of the eigenvalues of all m×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times m$$\end{document} principal minors of W. We also extend our results to general distributions with some moment conditions. Moreover, we gain the asymptotic results of the extreme eigenvalues of the principal minors in the case of the real Wigner matrix. Finally, similar results for the maxima and minima of the eigenvalues of all the principal minors with a size smaller than or equal to m are also given.
引用
收藏
页码:715 / 735
页数:20
相关论文
共 50 条
  • [1] Correction: Extreme eigenvalues of principal minors of random matrices with moment conditions
    Jianwei Hu
    Seydou Keita
    Kang Fu
    Journal of the Korean Statistical Society, 2023, 52 : 765 - 765
  • [2] Extreme eigenvalues of principal minors of random matrix with moment conditions
    Hu, Jianwei
    Keita, Seydou
    Fu, Kang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (03) : 715 - 735
  • [3] ASYMPTOTIC ANALYSIS FOR EXTREME EIGENVALUES OF PRINCIPAL MINORS OF RANDOM MATRICES
    Cai, T. Tony
    Jiang, Tiefeng
    Li, Xiaoou
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (06): : 2953 - 2990
  • [4] Extreme eigenvalues of principal minors of random matrices with moment conditions (Jun, 10.1007/s42952-023-00218-3, 2023)
    Hu, Jianwei
    Keita, Seydou
    Fu, Kang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (03) : 765 - 765
  • [5] On Wilks' joint moment formulas for embedded principal minors of Wishart random matrices
    Genest, C.
    Ouimet, F.
    Richards, D.
    STAT, 2024, 13 (02):
  • [6] Large deviations of extreme eigenvalues of random matrices
    Dean, David S.
    Majumdar, Satya N.
    PHYSICAL REVIEW LETTERS, 2006, 97 (16)
  • [7] EXTREME GAPS BETWEEN EIGENVALUES OF RANDOM MATRICES
    Ben Arous, Gerard
    Bourgade, Paul
    ANNALS OF PROBABILITY, 2013, 41 (04): : 2648 - 2681
  • [8] Eigenvalues for the minors of Wigner matrices
    Huang, Jiaoyang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2201 - 2215
  • [9] Extreme value statistics of eigenvalues of Gaussian random matrices
    Dean, David S.
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [10] Extreme eigenvalues of random matrices from Jacobi ensembles
    Winn, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (09)