A new tractable class of constraint satisfaction problems

被引:0
作者
Víctor Dalmau
机构
[1] Universitat Pompeu Fabra Estació de França,Departament de Tecnologia
来源
Annals of Mathematics and Artificial Intelligence | 2005年 / 44卷
关键词
constraint satisfaction problem; complexity; para-primal algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider constraint satisfaction problems where the set of constraint relations is fixed. Feder and Vardi (1998) identified three families of constraint satisfaction problems containing all known polynomially solvable problems. We introduce a new class of problems called para-primal problems, incomparable with the families identified by Feder and Vardi (1998) and we prove that any constraint problem in this class is decidable in polynomial time. As an application of this result we prove a complete classification for the complexity of constraint satisfaction problems under the assumption that the basis contains all the permutation relations. In the proofs, we make an intensive use of algebraic results from clone theory about the structure of para-primal and homogeneous algebras.
引用
收藏
页码:61 / 85
页数:24
相关论文
共 50 条
  • [21] ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS
    Climent, Laura
    Salido, Miguel A.
    Barber, Federico
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (04): : 2513 - 2532
  • [22] On Classifying Continuous Constraint Satisfaction problems
    Miltzow, Tillmann
    Schmiermann, Reinier F.
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 781 - 791
  • [23] Linear programs for constraint satisfaction problems
    Zimmermann, HJ
    Monfroglio, A
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 97 (01) : 105 - 123
  • [24] Robust Satisfiability of Constraint Satisfaction Problems
    Barto, Libor
    Kozik, Marcin
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 931 - 940
  • [25] BINARISATION FOR VALUED CONSTRAINT SATISFACTION PROBLEMS
    Cohen, David A.
    Cooper, Martin C.
    Jeavons, Peter G.
    Krokhin, Andrei
    Powell, Robert
    Zivny, Stanislav
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2279 - 2300
  • [26] LOGICAL COMPACTNESS AND CONSTRAINT SATISFACTION PROBLEMS
    Rorabaugh, Danny
    Tardif, Claude
    Wehlau, David
    LOGICAL METHODS IN COMPUTER SCIENCE, 2017, 13 (01)
  • [27] The Complexity of Temporal Constraint Satisfaction Problems
    Bodirsky, Manuel
    Kara, Jan
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 29 - 38
  • [28] Exploiting the constrainedness in constraint satisfaction problems
    Salido, MA
    Barber, F
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2004, 3192 : 126 - 136
  • [29] The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems
    Barto, Libor
    Pinsker, Michael
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 615 - 622
  • [30] WHEN SYMMETRIES ARE NOT ENOUGH: A HIERARCHY OF HARD CONSTRAINT SATISFACTION PROBLEMS
    Gillibert, Pierre
    Jonusas, Julius
    Kompatscher, Michael
    Mottet, Antoine
    Pinsker, Michael
    SIAM JOURNAL ON COMPUTING, 2022, 51 (02) : 175 - 213