Parameterized Complexity of Computing Maximum Minimal Blocking and Hitting Sets

被引:0
作者
Júlio Araújo
Marin Bougeret
Victor A. Campos
Ignasi Sau
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Université de Montpellier,CNRS, LIRMM
[3] Universidade Federal do Ceará,Departamento de Computação
来源
Algorithmica | 2023年 / 85卷
关键词
Maximum minimal blocking set; Maximum minimal hitting set; Parameterized complexity; Treewidth; Kernelization; Vertex cover; Upper domination; Design and analysis of algorithms; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
A blocking set in a graph G is a subset of vertices that intersects every maximum independent set of G. Let mmbs(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mmbs} (G)$$\end{document} be the size of a maximum (inclusion-wise) minimal blocking set of G. This parameter has recently played an important role in the kernelization of Vertex Cover with structural parameterizations. We provide a panorama of the complexity of computing mmbs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mmbs} $$\end{document} parameterized by the natural parameter and the independence number of the input graph. We also consider the closely related parameter mmhs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mmhs} $$\end{document}, which is the size of a maximum minimal hitting set of a hypergraph. Finally, we consider the problem of computing mmbs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {mmbs} $$\end{document} parameterized by treewidth, especially relevant in the context of kernelization. Since a blocking set intersects every maximum-sized independent set of a given graph and properties involving counting the sizes of arbitrarily large sets are typically non-expressible in monadic second-order logic, its tractability does not seem to follow from Courcelle’s theorem. Our main technical contribution is a fixed-parameter tractable algorithm for this problem.
引用
收藏
页码:444 / 491
页数:47
相关论文
共 41 条
  • [1] Bazgan C(2018)The many facets of upper domination Theoret. Comput. Sci. 717 2-25
  • [2] Brankovic L(2021)Note on sunflowers Discrete Math. 25 1305-1317
  • [3] Casel K(1996)A linear-time algorithm for finding tree-decompositions of small treewidth SIAM J. Comput. 71 566-580
  • [4] Fernau H(2015)Multi-parameter analysis for local graph partitioning problems: Using greediness for parameterization Algorithmica 196 62-71
  • [5] Jansen K(2015)On the max min vertex cover problem Discret. Appl. Math. 81 4043-4068
  • [6] Klein K-M(2019)How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? Algorithmica 72 1346-1367
  • [7] Lampis M(2006)Strong computational lower bounds via parameterized complexity J. Comput. Syst. Sci. 85 12-75
  • [8] Liedloff M(1990)The monadic second-order logic of graphs. I. Recognizable sets of finite graphs Inf. Comput. 8 18-24
  • [9] Monnot J(2011)Parameterized algorithms for double hypergraph dualization with rank limitation and maximum minimal vertex cover Discret. Optim. 63 512-530
  • [10] Paschos VT(2001)Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 53 263-299