Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties

被引:0
作者
Shi-Hai Dong
M. Cruz-Irisson
机构
[1] Escuela Superior de Física y Matemáticas,
[2] Instituto Politécnico Nacional,undefined
[3] ESIME-Culhuacan,undefined
[4] Instituto Politécnico Nacional,undefined
来源
Journal of Mathematical Chemistry | 2012年 / 50卷
关键词
Proper quantization rules; Energy spectrum; Modified Rosen-Morse potential; Partition function;
D O I
暂无
中图分类号
学科分类号
摘要
We apply our recently proposed proper quantization rule, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{x_A}^{x_B}k(x) dx -\int_{x_{0A}}^{x_{0B}}k_0(x) dx=n\pi}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k(x)=\sqrt{2 M [E-V(x) ]}/\hbar}$$\end{document} to obtain the energy spectrum of the modified Rosen-Morse potential. The beauty and symmetry of this proper rule come from its meaning—whenever the number of the nodes of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi(x)}$$\end{document} or the number of the nodes of the wave function ψ(x) increases by one, the momentum integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{x_A}^{x_B} k(x)dx}$$\end{document} will increase by π. Based on this new approach, we present a vibrational high temperature partition function in order to study thermodynamic functions such as the vibrational mean energy U, specific heat C, free energy F and entropy S. It is surprising to note that the specific heat C (k = 1) first increases with β and arrives to the maximum value and then decreases with it. However, it is shown that the entropy S (k = 1) first increases with the deepness of potential well λ and then decreases with it.
引用
收藏
页码:881 / 892
页数:11
相关论文
共 58 条
  • [1] Cooper F.(1995)undefined Phys. Rep. 251 267-undefined
  • [2] Khare A.(1985)undefined Phys. Lett. B 150 159-undefined
  • [3] Sukhatme U.(1951)undefined Rev. Mod. Phys. 23 21-undefined
  • [4] Comtet A.(2005)undefined Europhys. Lett. 69 685-undefined
  • [5] Bandrauk A.(2006)undefined Acta Phys. Sin. 55 1571-undefined
  • [6] Campbell D.(2004)undefined J. Chem. Phys. 121 8175-undefined
  • [7] Infeld L.(1926)undefined Z. Physik. 38 518-undefined
  • [8] Hull T.E.(1926)undefined Z. Physik. 39 828-undefined
  • [9] Ma Z.Q.(1926)undefined Compt. Rend. 183 24-undefined
  • [10] Xu B.W.(1959)undefined J. Math. Mech. 8 519-undefined