Existence of Exact Penalty for Constrained Optimization Problems in Metric Spaces

被引:0
作者
Alexander J. Zaslavski
机构
[1] The Technion-Israel Institute of Technology,Department of Mathematics
来源
Set-Valued Analysis | 2007年 / 15卷
关键词
Clarke’s generalized gradient; complete metric space; Ekeland’s variational principle; minimization problem; penalty function; 49M30; 90C26; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use the penalty approach in order to study constrained minimization problems in a complete metric space with locally Lipschitzian mixed constraints. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we establish sufficient conditions for the exact penalty property.
引用
收藏
页码:223 / 237
页数:14
相关论文
共 18 条
[1]  
Boukari D.(1995)Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993 Optimization 32 301-334
[2]  
Fiacco A.V.(1991)Calmness and exact penalization SIAM J. Control Optim. 29 493-497
[3]  
Burke J.V.(1991)An exact penalization viewpoint of constrained optimization SIAM J. Control Optim. 29 968-998
[4]  
Burke J.V.(1989)Exact penalty functions in constrained optimization SIAM J. Control Optim. 27 1333-1360
[5]  
Di Pillo G.(1974)On the variational principle J. Math. Anal. Appl. 47 324-353
[6]  
Grippo L.(1966)The penalty method in convex programming Soviet Math. Dokl. 8 459-462
[7]  
Ekeland I.(1979)Exact penalty function in nonlinear programming Math. Programming 17 251-269
[8]  
Eremin I.I.(1979)Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions SIAM J. Control Optim. 17 245-250
[9]  
Han S.-P.(1970)Control problems with kinks IEEE Trans. Automat. Control 15 570-575
[10]  
Mangasarian O.L.(1976)Maximum principle in problems of time optimal control with nonsmooth constraints J. Appl. Math. Mech. 40 960-969