Constant volume exponential solutions in Einstein–Gauss–Bonnet flat anisotropic cosmology with a perfect fluid

被引:0
作者
Dmitry Chirkov
Sergey A. Pavluchenko
Alexey Toporensky
机构
[1] Moscow State University,Sternberg Astronomical Institute
[2] Moscow State University,Faculty of Physics
[3] Universidad Austral de Chile,Instituto de Ciencias Físicas y Matemáticas
来源
General Relativity and Gravitation | 2014年 / 46卷
关键词
Gauss–Bonnet gravity; Exact solutions; Cosmology; Modified gravity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the constant volume exponential solutions (i.e. the solutions with the scale factors change exponentially over time so that the comoving volume remains the same) in the Einstein–Gauss–Bonnet gravity. We find conditions for these solutions to exist and show that they are compatible with any perfect fluid with the equation of state parameter ω<1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upomega <1/3$$\end{document} if the matter density of the Universe exceeds some critical value. We write down some exact solutions which generalize ones found in our previous paper for models with a cosmological constant.
引用
收藏
相关论文
共 36 条
  • [11] Tombal P(2009)undefined Mod. Phys. Lett. A24 513-undefined
  • [12] Papadopoulos D(2010)undefined Phys. Rev. D 82 104021-undefined
  • [13] Elizalde E(2013)undefined Phys. Rev. D 88 064044-undefined
  • [14] Makarenko AN(2009)undefined Phys. Rev. D 80 107501-undefined
  • [15] Obukhov VV(2010)undefined Gen. Relativ. Gravit. 42 2633-undefined
  • [16] Osetrin KE(1989)undefined Nucl. Phys. B327 253-undefined
  • [17] Filippov AE(1990)undefined Phys. Rev. D 41 3696-undefined
  • [18] Farhoudi M(2007)undefined Gravit. Cosmol. 13 207-undefined
  • [19] Pavluchenko SA(2014)undefined JHEP 06 095-undefined
  • [20] Toporensky AV(undefined)undefined undefined undefined undefined-undefined