A Few Remarks on Asymptotic Stabilities of Markov Operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{L}^{\mathbf{1}}$$\end{document}-Spaces

被引:0
作者
Farrukh Mukhamedov
机构
[1] Department of Mathematical Sciences,
[2] College of Science,undefined
[3] United Arab Emirates University,undefined
关键词
positive contraction; -completely mixing; Markov operator; uniform ergodicity; Dobrushin ergodicity coefficient;
D O I
10.1134/S1995080222010139
中图分类号
学科分类号
摘要
引用
收藏
页码:3173 / 3183
页数:10
相关论文
共 54 条
  • [1] Aaronson J.(1979)Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products Israel J. Math. 33 198-224
  • [2] Lin M.(1972)On operator convergence in Hilbert space and in Lebesgue space Period. Math. Hungar. 2 235-244
  • [3] Weiss B.(1990)Asymptotic properties of iterates of stochastic operators on (AL) Banach lattices Anal. Polon. Math. 52 165-173
  • [4] Akcoglu M.(2021)On asymptotic periodicity of kernel double Markovian operators Positivity 25 149-158
  • [5] Sucheston L.(1993)Relative entropy under mappings by stochastic matrices Linear Algebra Appl. 179 211-235
  • [6] Bartoszek W.(1956)Central limit theorem for nonstationary Markov chains. I, II Theor. Probab. Appl. 1 65-80
  • [7] Bartoszek W.(1990)Characterizations of conditional expectation-type operators Pacif. J. Math. 141 55-78
  • [8] Krzeminski M.(2006)A note on a variation of Doeblin’s condition for uniform ergodicity of Markov chains Acta Math. Hungar. 10 287-292
  • [9] Cohen J. E.(2003)Invariant densities and mean ergodocity of Markov operators Israel J. Math. 136 373-379
  • [10] Iwasa Y.(2018)Uniform ergodicities of Lotz–Räbiger nets of Markov operators on ordered Banach spaces Results Math. 73 35-876