Quantum cosmological perfect fluid models in Einstein aether theory

被引:0
作者
G. A. Monerat
O. Goldoni
F. G. Alvarenga
G. Oliveira-Neto
E. V. Corrêa Silva
机构
[1] Universidade do Estado do Rio de Janeiro,Departamento de Modelagem Computacional, Instituto Politécnico
[2] Universidade do Estado do Rio de Janeiro,Departamento de Engenharia Mecânica e Energia, Instituto Politécnico
[3] Universidade Federal do Espírito Santo,Departamento de Física, Centro de Ciências Exatas
[4] Universidade Federal de Juiz de Fora,Departamento de Física, Instituto de Ciências Exatas
[5] Universidade do Estado do Rio de Janeiro,Departamento de Matemática Física e Computação, Faculdade de Tecnologia
来源
The European Physical Journal Plus | / 137卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The possibility of constructing a consistent quantum theory of gravitation has motivated the recent interest in gravitational theories that break Lorentz invariance, as it is the case of Einstein aether theory. In this work, we employ Schutz variational formalism to obtain a quantum cosmological Einstein aether model for a spatially flat Universe filled with a barotropic fluid with equation of state p=αρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\alpha \rho $$\end{document}. Solutions to the Wheeler–DeWitt equation are obtained by the superposition of stationary quantum states, yielding finite-norm wave packets. The behavior of the scale factor is studied from the point of view of the many-worlds and of the de Broglie–Bohm interpretations of quantum mechanics, indicating non-singular solutions for α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 1$$\end{document}.
引用
收藏
相关论文
共 54 条
  • [1] Mukohyama S(2010)undefined Class. Quantum Grav. 27 223101-undefined
  • [2] Gümrükçüoǧlu AE(2018)undefined Phys. Rev. D 97 024032-undefined
  • [3] Saravani M(2006)undefined Living Rev. Relativ. 9 1-undefined
  • [4] Sotiriou TP(2001)undefined J. High Energy Phys. 09 023-undefined
  • [5] Will CM(2021)undefined Eur. Phys. J. C 81 152-undefined
  • [6] Moore GD(1967)undefined Phys. Rev. 160 1113-undefined
  • [7] Nelson AE(1970)undefined Phys. Rev. D 2 2762-undefined
  • [8] Dimakis N(1971)undefined Phys. Rev. D 4 3559-undefined
  • [9] Pailas T(2016)undefined Braz. J. Phys. 47 96-undefined
  • [10] Paliathanasis A(1977)undefined Theor. Math. Phys. 33 1076-undefined