On the Law of Addition of Random Matrices

被引:0
作者
L. Pastur
V. Vasilchuk
机构
[1] Centre de Physique Théorique de CNRS,
[2] Luminy–case 907,undefined
[3] 13288 Marseille,undefined
[4] France.¶E-mail: pastur@cpt.univ-mrs.fr,undefined
[5] U.F.R. de Mathématiques,undefined
[6] Université Paris 7,undefined
[7] 2,undefined
[8] place Jussieu,undefined
[9] 75251 Paris Cedex 05,undefined
[10] France,undefined
[11] Mathematical Division,undefined
[12] Institute for Low Temperature Physics,undefined
[13] 47,undefined
[14] Lenin Ave.,undefined
[15] 310164,undefined
[16] Kharkov,undefined
[17] Ukraine. E-mail: vasilchuk@ilt.kharkov.ua,undefined
来源
Communications in Mathematical Physics | 2000年 / 214卷
关键词
Functional Equation; Random Matrix; Counting Measure; Large Matrix; Matrix Order;
D O I
暂无
中图分类号
学科分类号
摘要
Normalized eigenvalue counting measure of the sum of two Hermitian (or real symmetric) matrices An and Bn rotated independently with respect to each other by the random unitary (or orthogonal) Haar distributed matrix Un (i.e. An+Un*BnUn) is studied in the limit of large matrix order n. Convergence in probability to a limiting nonrandom measure is established. A functional equation for the Stieltjes transform of the limiting measure in terms of limiting eigenvalue measures of An and Bn is obtained and studied.
引用
收藏
页码:249 / 286
页数:37
相关论文
共 50 条
[31]   Sylvester Index of Random Hermitian Matrices [J].
Mohamed Bouali ;
Jacques Faraut .
Journal of Theoretical Probability, 2024, 37 :768-813
[32]   Asymptotics of products of nonnegative random matrices [J].
V. Yu. Protasov .
Functional Analysis and Its Applications, 2013, 47 :138-147
[33]   Eigenvectors of Deformed Wigner Random Matrices [J].
Haddadi, Farzan ;
Amini, Arash .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (02) :1069-1079
[34]   Random doubly stochastic tridiagonal matrices [J].
Diaconis, Persi ;
Wood, Philip Matchett .
RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (04) :403-437
[35]   Asymptotic properties of random matrices and pseudomatrices [J].
Lenczewski, Romuald .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2403-2440
[36]   Eigenvalue distributions of random unitary matrices [J].
K. Wieand .
Probability Theory and Related Fields, 2002, 123 :202-224
[37]   On the discrepancy of random matrices with many columns [J].
Franks, Cole ;
Saks, Michael .
RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) :64-96
[38]   Paths in Weyl chambers and random matrices [J].
Bougerol, P ;
Jeulin, T .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) :517-543
[39]   The Semicircle Law for Matrices with Independent Diagonals [J].
Olga Friesen ;
Matthias Löwe .
Journal of Theoretical Probability, 2013, 26 :1084-1096
[40]   The semicircle law for matrices with ergodic entries [J].
Loewe, Matthias .
STATISTICS & PROBABILITY LETTERS, 2018, 141 :90-95