Optimal control of molecular dynamics using Markov state models

被引:0
|
作者
Christof Schütte
Stefanie Winkelmann
Carsten Hartmann
机构
[1] Freie Universität Berlin,Institut für Mathematik
来源
Mathematical Programming | 2012年 / 134卷
关键词
49M25; 74A25; 60J28;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical scheme for solving high-dimensional stochastic control problems on an infinite time horizon that appear relevant in the context of molecular dynamics is outlined. The scheme rests on the interpretation of the corresponding Hamilton–Jacobi–Bellman equation as a nonlinear eigenvalue problem that, using a logarithmic transformation, can be recast as a linear eigenvalue problem, for which the principal eigenvalue and its eigenfunction are sought. The latter can be computed efficiently by approximating the underlying stochastic process with a coarse-grained Markov state model for the dominant metastable sets. We illustrate our method with two numerical examples, one of which involves the task of maximizing the population of α-helices in an ensemble of small biomolecules (alanine dipeptide), and discuss the relation to the large deviation principle of Donsker and Varadhan.
引用
收藏
页码:259 / 282
页数:23
相关论文
共 50 条
  • [1] Optimal control of molecular dynamics using Markov state models
    Schuette, Christof
    Winkelmann, Stefanie
    Hartmann, Carsten
    MATHEMATICAL PROGRAMMING, 2012, 134 (01) : 259 - 282
  • [2] Markov State Models for Rare Events in Molecular Dynamics
    Sarich, Marco
    Banisch, Ralf
    Hartmann, Carsten
    Schuette, Christof
    ENTROPY, 2014, 16 (01): : 258 - 286
  • [3] Building Markov state models using optimal transport theory
    Dixit, Purushottam D.
    Dill, Ken A.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (05):
  • [4] On metastability and Markov state models for non-stationary molecular dynamics
    Koltai, Peter
    Ciccotti, Giovanni
    Schuette, Christof
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17):
  • [5] Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models
    Meng, Yilin
    Gao, Cen
    Clawson, David K.
    Atwell, Shane
    Russell, Marijane
    Vieth, Michal
    Roux, Benoit
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (05) : 2721 - 2732
  • [6] Ligand Binding Rate Constants in Heme Proteins Using Markov State Models and Molecular Dynamics Simulations
    Bringas, Mauro
    Lombardi, Leandro E.
    Luque, F. Javier
    Estrin, Dario A.
    Capece, Luciana
    CHEMPHYSCHEM, 2019, 20 (19) : 2451 - 2460
  • [7] Markov state models and molecular alchemy
    Schuette, Christof
    Nielsen, Adam
    Weber, Marcus
    MOLECULAR PHYSICS, 2015, 113 (01) : 69 - 78
  • [8] Application of Molecular-Dynamics Based Markov State Models to Functional Proteins
    Malmstrom, Robert D.
    Lee, Christopher T.
    Van Wart, Adam T.
    Amaro, Rommie E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (07) : 2648 - 2657
  • [9] Improved Kinetics of Molecular Simulations using Biased Markov State Models
    Rudzinski, Joseph F.
    Kremer, Kurt
    Bereau, Tristan
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 523A - 523A
  • [10] Building Markov state models with solvent dynamics
    Chen Gu
    Huang-Wei Chang
    Lutz Maibaum
    Vijay S Pande
    Gunnar E Carlsson
    Leonidas J Guibas
    BMC Bioinformatics, 14