Multiplicity of high energy solutions for superlinear Kirchhoff equations

被引:82
作者
Liu, Wei [1 ]
He, Xiaoming [1 ]
机构
[1] College of Science, Minzu University of China
基金
中国国家自然科学基金;
关键词
High energy solutions; Nonlinear Kirchhoff equations; Variational methods;
D O I
10.1007/s12190-012-0536-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the existence of infinitely many high energy solutions for the nonlinear Kirchhoff equations {-(a+b∫ R3 |nabla u| 2dx)Δ u + V(x)u=f(x,u), x∈ℝ 3, u ∈ H 1 (ℝ 3). where a,b>0 are constants, V:ℝ 3→ ℝ is continuous and has a positive infimum. f is a subcritical nonlinearity which needs not to satisfy the usual Ambrosetti-Rabinowitz-type growth conditions. © 2012 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:473 / 487
页数:14
相关论文
共 28 条
[21]  
Bartsch T., Wang Z.Q., Existence and multiple results for some superlinear elliptic problems on R <sup>N</sup> , Commun. Partial Differ. Equ., 20, pp. 1725-1741, (1995)
[22]  
Bartsch T., Willem M., On an elliptic equation with concave and convex nonlinearities, Proc. Am. Math. Soc., 123, pp. 3555-3561, (1995)
[23]  
Willem M., Minimax Theorems, (1996)
[24]  
Zou W., Variant fountain theorem and their applications, Manuscr. Math., 104, pp. 343-358, (2001)
[25]  
Zou W., Schechter M., Critical Point Theory and Its Applications, (2006)
[26]  
He X., Zou W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in <sup>3</sup> , J. Differ. Equ., (2011)
[27]  
Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, (1986)
[28]  
Jeajean L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on <sup>N</sup> , Proc. R. Soc. Edinb. A, 129, pp. 787-809, (1999)