A jump problem for β-analytic functions in domains with fractal boundaries

被引:0
作者
Ricardo Abreu-Blaya
Juan Bory-Reyes
Jean-Marie Vilaire
机构
[1] Universidad de Holguín,Departamento de Matemáticas
[2] Universidad de Oriente,Departamento de Matemáticas
[3] Universidad Carlos III de Madrid,Departamento de Matemáticas
来源
Revista Matemática Complutense | 2010年 / 23卷
关键词
-analytic functions; Jump problem; Fractals; 30E20; 30E25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let γ be a simple closed Jordan curve in the complex plane ℂ, Ω+ and Ω− the corresponding domains in ℂ, with 0∈Ω+ and ∞∈Ω−.
引用
收藏
页码:105 / 111
页数:6
相关论文
共 16 条
[1]  
Abreu Blaya R.(2008)Riemann boundary value problem for Int. J. Pure Appl. Math. 42 19-37
[2]  
Bory Reyes J.(2006)-analytic functions Complex Var. Elliptic Equ. 51 763-775
[3]  
Peña Peña D.(2007)On the jump problem for Complex Var. Elliptic Equ. 52 877-882
[4]  
Vilaire J.-M.(1983)-analytic functions Izv. Vyssh. Uchebn. Zaved. Mat. 4 68-80
[5]  
Abreu Blaya R.(2002)A note about Riemann boundary value problems on non-rectifiable curves Russ. Math. 46 12-18
[6]  
Bory Reyes J.(1998)The Riemann problem on a closed Jordan curve Russ. Math. 42 51-63
[7]  
Peña Peña D.(1998)Boundary values of Cauchy type integral on a nonsmooth curve Math. Notes 64 476-482
[8]  
Liu H.(1995)Integration over a plane fractal curve, a jump problem, and generalized measures St. Petersbg. Math. J. 6 147-171
[9]  
Kats B.A.(1985)Integration over a fractal curve and the jump problem Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 1985 58-62
[10]  
Kats B.A.(1987)The Riemann boundary value problem for nonsmooth arcs and fractal dimensions Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 1 51-54