Optimal robust mean-variance hedging in incomplete financial markets

被引:0
作者
Lazrieva N. [1 ]
Toronjadze T. [1 ]
机构
[1] Georgian-American University, Business School, Tbilisi, A. Razmadze Mathematical Institute, Tbilisi
关键词
Volatility; Asset Price; Trading Strategy; Implied Volatility; Hedging;
D O I
10.1007/s10958-008-9128-x
中图分类号
学科分类号
摘要
An optimal B-robust estimate is constructed for the multidimensional parameter in the drift coefficient of a diffusion-type process with a small noise. The optimal mean-variance robust (optimal V-robust) trading strategy is to hedge (in the mean-variance sense) the contingent claim in an incomplete financial market with an arbitrary information structure and a misspecified volatility of the asset price, which is modelled by a multidimensional continuous semimartingale. The obtained results are applied to the stochastic volatility model, where the model of the latent volatility process contains the unknown multidimensional parameter in the drift coefficient and a small parameter in the diffusion term. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:262 / 290
页数:28
相关论文
共 41 条
  • [1] Avellaneda M., Levy A., Paras A., Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Finance, 2, pp. 73-88, (1995)
  • [2] Avellaneda M., Paras A., Managing the volatility risk of portfolios of derivative securities: The Lagrangian uncertain volatility model, Appl. Math. Finance, 3, pp. 21-52, (1996)
  • [3] Biagini F., Guasoni P., Pratelli M., Mean-variance hedging for stochastic volatility models, Math. Finance, 10, pp. 109-123, (2000)
  • [4] Bajeux-Besnainou I., Rochet J., Dynamic spanning: Are options an appropriate instrument?, Math. Finance, 6, pp. 1-16, (1996)
  • [5] Chesney M., Elliott R.J., Madan D., Yang H., Diffusion coefficient estimation and asset pricing when risk premia and sensitivities are time varying, Math. Finance, 3, pp. 85-99, (1993)
  • [6] Chitashvili R., Lazrieva N., Toronjadze T., Asymptotic Theory of M-estimators in General Statistical Models. Part I. on Asymptotic Behaviour of Estimators under Model Perturbance, (1990)
  • [7] Chitashvili R., Lazrieva N., Toronjadze T., Asymptotic Theory of M-estimators in General Statistical Models. Part II. on Asymptotic Behaviour of Estimators in the Presence of Nuisance Parameter, (1990)
  • [8] Delbaen F., Monat P., Schachermayer W., Schweizer M., Stricker C., Weighted norm inequalities and hedging in incomplete markets, Finance Stoch., 1, pp. 181-227, (1997)
  • [9] Duffie D., Richardson H.R., Mean-variance hedging in continuous time, Ann. Appl. Probab., 1, pp. 1-15, (1991)
  • [10] Follmer H., Sondermann D., Hedging of nonredundant contingent claims, Contributions to Mathematical Economics, pp. 205-223, (1986)