Stability of spacelike surfaces with constant mean curvature in Lorentzian manifolds

被引:0
作者
Yecheng Zhu
机构
[1] Anhui University of Technology,Department of Applied Mathematics
[2] Nankai University,Chern Institute of Mathematics and LPMC
来源
manuscripta mathematica | 2023年 / 170卷
关键词
53C21; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the stability of spacelike surfaces with constant mean curvature in Lorentzian manifolds, and get some topological and geometric properties of stable spacelike surfaces.
引用
收藏
页码:607 / 628
页数:21
相关论文
共 51 条
[1]  
Aquino CP(2014)On the umbilicity of complete constant mean curvature spacelike hypersurfaces Math. Ann. 360 555-569
[2]  
de Lima HF(1984)Stability of hypersurfaces with constant mean curvature Math. Z. 185 339-353
[3]  
Barbosa JL(1980)Stability of minimal surfaces and eigenvalues of the Laplacian Math. Z. 173 13-28
[4]  
do Carmo M(1988)Stability of hypersurfaces with constant mean curvature in Riemannian manifolds Math. Z. 197 123-138
[5]  
Barbosa JL(1993)Spacelike hypersurfaces with constant mean curvature in Lorentz spaces Matem. Contemporânea 4 27-44
[6]  
do Carmo M(2016)A remark on compact hypersurfaces with constant mean curvature in space forms Bull. Sci. Math. 140 901-907
[7]  
Barbosa J. L(1971)The splitting theorem for manifolds of nonnegative Ricci curvature J. Differ. Geom. 6 119-128
[8]  
do Carmo M(2015)Critical sets of elliptic equations Commun. Pure Appl. Math. 68 173-209
[9]  
Eschenburg J(2017)Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres Calc. Var. Partial Differ. 56 1-12
[10]  
Barbosa JL(2006)The structure of weakly stable minimal hypersurfaces An. Acad. Bras. Ciênc. 78 195-201