Measurement of the top quark pole mass using tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document}+jet events in the dilepton final state in proton-proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV

被引:0
作者
A. Tumasyan
W. Adam
J. W. Andrejkovic
T. Bergauer
S. Chatterjee
K. Damanakis
M. Dragicevic
A. Escalante Del Valle
P. S. Hussain
M. Jeitler
N. Krammer
L. Lechner
D. Liko
I. Mikulec
P. Paulitsch
F. M. Pitters
J. Schieck
R. Schöfbeck
D. Schwarz
S. Templ
W. Waltenberger
C.-E. Wulz
M. R. Darwish
T. Janssen
T. Kello
H. Rejeb Sfar
P. Van Mechelen
E. S. Bols
J. D’Hondt
A. De Moor
M. Delcourt
H. El Faham
S. Lowette
S. Moortgat
A. Morton
D. Müller
A. R. Sahasransu
S. Tavernier
W. Van Doninck
D. Vannerom
B. Clerbaux
G. De Lentdecker
L. Favart
D. Hohov
J. Jaramillo
K. Lee
M. Mahdavikhorrami
I. Makarenko
A. Malara
S. Paredes
机构
[1] Yerevan Physics Institute,Universidade Estadual Paulista
[2] Institut für Hochenergiephysik,Institute for Nuclear Research and Nuclear Energy
[3] Universiteit Antwerpen,Department of Physics
[4] Vrije Universiteit Brussel,State Key Laboratory of Nuclear Physics and Technology
[5] Université Libre de Bruxelles,Center for High Energy Physics (CHEP
[6] Ghent University,FU)
[7] Université Catholique de Louvain,Department of Physics
[8] Centro Brasileiro de Pesquisas Fisicas,Laboratoire Leprince
[9] Universidade do Estado do Rio de Janeiro,Ringuet, CNRS/IN2P3
[10] Universidade Federal do ABC,MTA
[11] Bulgarian Academy of Sciences,ELTE Lendület CMS Particle and Nuclear Physics Group
[12] University of Sofia,Institute of Physics
[13] Beihang University,Karoly Robert Campus
[14] Tsinghua University,National Institute of Science Education and Research
[15] Institute of High Energy Physics,College of Engineering and Technology
[16] Peking University,National Centre for Particle Physics
[17] Sun Yat-Sen University,National Centre for Physics
[18] Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University,Institute of Experimental Physics, Faculty of Physics
[19] Zhejiang University,VINCA Institute of Nuclear Sciences
[20] Universidad de Los Andes,Instituto de Física de Cantabria (IFCA)
[21] Universidad de Antioquia,Physics Department, Faculty of Science
[22] University of Split,Faculty of Informatics
[23] Faculty of Electrical Engineering,Department of Physics
[24] Mechanical Engineering and Naval Architecture,Scuola Superiore Meridionale
[25] University of Split,Department of Applied Physics, Faculty of Science and Technology
[26] Faculty of Science,Faculty of Physics
[27] Institute Rudjer Boskovic,Trincomalee Campus
[28] University of Cyprus,School of Physics and Astronomy
[29] Charles University,undefined
[30] Escuela Politecnica Nacional,undefined
[31] Universidad San Francisco de Quito,undefined
[32] Academy of Scientific Research and Technology of the Arab Republic of Egypt,undefined
[33] Egyptian Network of High Energy Physics,undefined
[34] Fayoum University,undefined
[35] National Institute of Chemical Physics and Biophysics,undefined
[36] University of Helsinki,undefined
[37] Helsinki Institute of Physics,undefined
[38] Lappeenranta-Lahti University of Technology,undefined
[39] IRFU,undefined
[40] CEA,undefined
[41] Université Paris-Saclay,undefined
[42] Ecole Polytechnique,undefined
[43] Institut Polytechnique de Paris,undefined
[44] Université de Strasbourg,undefined
[45] CNRS,undefined
[46] IPHC UMR 7178,undefined
[47] Institut de Physique des 2 Infinis de Lyon (IP2I),undefined
[48] Georgian Technical University,undefined
[49] RWTH Aachen University,undefined
[50] I. Physikalisches Institut,undefined
关键词
Hadron-Hadron Scattering; Top Physics;
D O I
10.1007/JHEP07(2023)077
中图分类号
学科分类号
摘要
A measurement of the top quark pole mass mtpole\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_{\textrm{t}}^{\textrm{pole}} $$\end{document} in events where a top quark-antiquark pair (tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document}) is produced in association with at least one additional jet (tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document}+jet) is presented. This analysis is performed using proton-proton collision data at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb−1. Events with two opposite-sign leptons in the final state (e+e−, μ+μ−, e±μ∓) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document}+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpole\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_{\textrm{t}}^{\textrm{pole}} $$\end{document} = 172.93 ± 1.36 GeV.
引用
收藏
相关论文
共 71 条
[1]  
de Blas J(2016)undefined JHEP 12 135-undefined
[2]  
Degrassi G(2012)undefined JHEP 08 098-undefined
[3]  
Alekhin S(2012)undefined Phys. Lett. B 716 214-undefined
[4]  
Djouadi A(2014)undefined Eur. Phys. J. C 74 3119-undefined
[5]  
Moch S(2020)undefined Ann. Rev. Nucl. Part. Sci. 70 225-undefined
[6]  
Juste A(2013)undefined Eur. Phys. J. C 73 2438-undefined
[7]  
Hoang AH(2014)undefined JHEP 10 059-undefined
[8]  
Alioli S(2007)undefined JHEP 11 070-undefined
[9]  
Bertolini D(2007)undefined JHEP 09 126-undefined
[10]  
Harris P(2010)undefined JHEP 06 043-undefined